DOI QR코드

DOI QR Code

Separation of Hydrogen-Nitrogen Gases by PTMSP-Borosilicate Composite Membranes

PTMSP-Borosilicate 복합막에 의한 수소-질소 기체 분리에 관한 연구

  • Lee, Suk Ho (Department of Chemistry, Sang Myung University) ;
  • Kang, Tae Beom (Department of Chemistry, Sang Myung University)
  • Received : 2014.11.18
  • Accepted : 2014.12.09
  • Published : 2014.12.31

Abstract

The amorphous and porous borosilicate without any cracks was obtained under the following condition : 0.01~ 0.10 mole ratio of trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) and the temperature of $700{\sim}800^{\circ}C$. According to the BET and SEM measurements, borosilicate heat-treated in between 700 and $800^{\circ}C$ showed the surface area of $251.12{\sim}355.62m^2/g$, the pore diameter of 3.5~4.9 nm, and the particle size of 30~60 nm. According to the TGA measurements, the thermal stability of poly[1-(trimethylsilyl)propyne](PTMSP) membrane was enhanced by inserting borosilicate. SEM observation showed that the size of dispersed borosilicate in the composite membrane was $1{\mu}m$. The results showed that the permeability of $H_2$ and $N_2$ increased and the selectivity of $H_2/N_2$ decreased upon the addition of borosilicate into PTMSP membranes. Addition of borosilicate may possibly increase the free volume, cavity and porosity of membranes indicating that permeation occurred by molecular sieving, surface and Knudsen diffusion rather than solution diffusion of gases.

무정형의 괴상의 다공성 borosilicate는 trimethylborate (TMB)/ tetraethylorthosilicate (TEOS) 몰비 0.01~0.10 겔체를 $700{\sim}800^{\circ}C$ 온도범위에서 열처리 하였을 때 얻어졌다. BET와 SEM 관찰에 의하면 $700{\sim}800^{\circ}C$에서 얻어진 borosilicate의 표면적은 $251.12{\sim}355.62m^2/g$이고, 기공직경은 3.5~4.9 nm이며, 입자크기는 30~60 nm이었다. TGA측정에 의하면 borosilicate가 poly[1-(trimethylsilyl)propyne](PTMSP)에 첨가되었을 때 PTMSP-borosilicate 복합막의 열적 안정성은 향상 되었다. SEM관찰에 의하면 borosilicate는 $1{\mu}m$ 크기로 복합막 내에 분산되어 있었다. 기체투과실험에 의하면 PTMSP에 borosilicate 함량이 증가하면 자유부피, 공동, 기공률이 증가하여 기체투과가 용해확산에 의한 것보다 분자체거름, 표면확산, Knudsen 확산에 의해 일어나는 경우가 점차 증가함으로 해서 $H_2$$N_2$의 투과도는 증가하고 선택도($H_2/N_2$)는 감소하였다.

Keywords

References

  1. T. Masuda, E. Isobe, T. Higashimura, and K. Takada, "Poly[1-(trimethylsilyl)-1-propyne]: A new high polymer synthesized with transition metal catalysts and characterized by extremely high gas permeability", J. Am. Chem. Soc., 105, 7473 (1983). https://doi.org/10.1021/ja00363a061
  2. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, "Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsilyl-1-propyne) at elevated temperatures", J. Membr. Sci., 191, 85 (2001). https://doi.org/10.1016/S0376-7388(01)00452-5
  3. N. A. Plate, A. K. Bokarev, N. E. Kaliuzhnyi, E. G. Litvinova,V. S. Khotimskii, V. V. Volkov, and Yu. P. Yampol'skii, "Gas and vapor permeation and sorption in poly(trimethylsilylpropyne)", J. Membr. Sci., 60, 13 (1991). https://doi.org/10.1016/S0376-7388(00)80321-X
  4. Y. Ichiraku and S. A. Srern, "An investigation of the high gas permeability of poly(1-Trimethylsilyl-1-Propyne)", J. Membr. Sci., 34, 5 (1987). https://doi.org/10.1016/S0376-7388(00)80017-4
  5. K. Nagai, S. Kanehashi, S. Tabei, and T. Nakagawa, "Nitrogen permeability and carbon dioxide solubility in poly(1-trimethylsilyl-1-propyne)-based binary substituted polyacetylene blends", J. Membr. Sci., 251, 101 (2005). https://doi.org/10.1016/j.memsci.2004.10.041
  6. T. M. Madkour, "Development of the molecular design rules of ultra-permeable poly[1-(trimethylsilyl)-1-propyne] membranes", Polymer, 41, 7489 (2000). https://doi.org/10.1016/S0032-3861(00)00083-5
  7. I. Pinnau and L. G. Toy, "Transport of organic vapors through poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 116, 199 (1996). https://doi.org/10.1016/0376-7388(96)00041-5
  8. M. Langsam and L. M. Robeson, "Substituted propyne polymers-Part II. Effects of aging on the gas permeability properties of poly[1-(trimethylsilyl)propyne] for gas separation membranes", Polym. Eng. Sci., 29(1), 44 (1989). https://doi.org/10.1002/pen.760290109
  9. M. Yoshikawa, M. Kishida, M. Tanigaki, and W. Eguchi, "Novel liquid membrane transport system for tryptophan", J. Membr. Sci., 47, 53 (1989). https://doi.org/10.1016/S0376-7388(00)80859-5
  10. S. Tasaka, N. Inagaki, and M. Igawa, J. Polym. Sci., Polym. Phys., Ed., 29, 691 (1991). https://doi.org/10.1002/polb.1991.090290607
  11. K. Nagai, A. Higuchi, and T. Nakagawa, "Bromination and gas permeability of poly(1-trimethylsilyl-1-propyne) membrane", J. Appl. Polym. Sci., 54, 1207 (1994). https://doi.org/10.1002/app.1994.070540903
  12. L. Starannikova, V. Khodzhaeva, and Yu. Yampolskii, "Mechanism of aging of poly[1-(trimethylsilyl)-1-propyne] and its effect on gas permeability", J. Membr. Sci., 244, 183 (2004). https://doi.org/10.1016/j.memsci.2004.06.051
  13. K. Nagai and T. Nakagawa, "Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts", J. Membr. Sci., 105, 261 (1995). https://doi.org/10.1016/0376-7388(95)00065-K
  14. T. Nakagawa, S. Fujisaki, H. Nakano, and A. Higuchi, "Physical modification of poly[1-(trimethylsilyl)-1-propyne] membranes for gas separation", J. Membr. Sci., 94, 183 (1994). https://doi.org/10.1016/0376-7388(93)E0169-K
  15. Y. Nagase, S. Mori, and K. Matsui, "Chemical modification of poly(substituted-acetylene). III. Synthesis and gas permeability of poly(1-phenyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci., 26, 3131 (1988). https://doi.org/10.1002/pola.1988.080261122
  16. Y. Nagase, T. Ueda, K. Matsui, and M. Uchikura, "Chemical modification of poly(seda, Kiyoh-acetylene). I. Synthesis and gas permeability of poly(1-trimethylsilyl-1-propyne)/poly(dimethylsiloxane) graft copolymer", J. Polym. Sci. B: Polym. Phys., 29, 171 (1991). https://doi.org/10.1002/polb.1991.090290204
  17. D. Gomes, S. P. Nunes, and K. V. Peinemann, "Membranes for gas separation based on poly[1-(trimethylsilyl)-1-propyne]-silica nanocomposites", J. Membr. Sci., 246, 13 (2005). https://doi.org/10.1016/j.memsci.2004.05.015
  18. T. C. Merkel, Z. He, I. Pinnau, B. D. Freeman, P. Meakin, and A. J. Hill, "Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyene)", Macromolecules, 36, 6844 (2003). https://doi.org/10.1021/ma0341566
  19. K. D. Sitter, P. Winberg, J. D'Haen, C. Dotremont, R. Leysen, J. A. Martens, S. Mullens, F. H. J. Maurer, and I. F. J. Vankelecom, "Silica filled poly(1-trimethylsily-1-propyne) nanocomposite membranes: Relation between the transport of gases and structural characteristics", J. Membr. Sci., 278, 83 (2006). https://doi.org/10.1016/j.memsci.2005.10.046
  20. A. Higuchi, T. Yomoya, T. Imizu, K. Mizoguchi, Z. He, I. Pinnau, K. Nagai, and D. Freeman, "Gas Permeation of fullerene-dispersed poly(1-trimethylsilyl-1-propyne) membranes", J. Polym. Sci. B: Polym. Phys. 38, 1749 (2000). https://doi.org/10.1002/(SICI)1099-0518(20000515)38:10<1749::AID-POLA530>3.0.CO;2-L
  21. A. M. Caminade, R. Laurent, and J. P. Majoral, "Characterization of dendrimers", Adv. Drug Deliver. Rev., 57, 2130 (2005). https://doi.org/10.1016/j.addr.2005.09.011
  22. W. S. Jung and H. K. Lee, "Gas permeation characteristics of PTMSP/PMMH dendrimmer composite membranes", Membrane Journal, 18, 226 (2008).
  23. O. S. Kim and S. R. Hong, "Separation of $H_2$ and $N_2$ gases by PTMSP-NaY zeolite composite membranes", Membrane Journal, 24, 285 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.285
  24. J. E. Shelby, Molecular solubility and diffusion, in Treatise on Materials Science and Technology; ed. M. Tomozawa, and R. H. Doremus, Academic Press, NY (1979).
  25. M. A. Villegas, M. Aparicio, and A. Duran, "Thick sol-gel coatings based on the $B_2O_3-SiO_2$ system", J. Non-Crystalline Solids, 218, 146 (1997). https://doi.org/10.1016/S0022-3093(97)00073-2
  26. M. A. Villegas and J. M. Fernandez Navarro, "Characterization of $B_2O_3-SiO_2$ glasses prepared via sol-gel", J. Mater. Sci., 23, 2464 (1988). https://doi.org/10.1007/BF01111904
  27. N. Tohge, A. Matsuda, and T. Minami, "Coating films of $20B_2O_3.80SiO_2$ by the sol-gel method", J. Am. Ceram. Soc., 70, c-13 (1987).
  28. S. H. Cho, H. K. Lee, and T. B. Kang, "Separation of H2/N2 gas mixture by PTMSP-PEI and PDMS-PEI composite membranes," Membrane Journal, 13, 291 (2003).
  29. S. L. Hong and H. K. Lee, "Preparation and permeation characteristics of PTMSP-PDMS-Silica/PEI composite membranes," Membrane Journal, 18, 146 (2008).