• Title/Summary/Keyword: Temperature of coefficient of resistance

Search Result 537, Processing Time 0.027 seconds

An Experimental Study on the Heat Transfer Characteristics of High-Temperature Cylindrical Heat Pipes (고온 원관형 히트파이프의 열전달 특성에 관한 실험 연구)

  • 박수용;부준홍
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.70-76
    • /
    • 2004
  • High-temperature cylindrical sodium/stainless-steel heat pipes were manufactured and tested for transient as well as steady states. Total length of the heat pipe was 1 m and the diameter was 25.4 mm. Screen meshes of 3 different sizes were used to estimate the effect of mesh size on the thermal performance of the heat pipe. The minimum thermal resistance achieved was as low as 0.02$^{\circ}C$/W for the maximum thormal load of 2 ㎾. The average heat transfer coefficient in the evaporator was about 2,000 ㎾/$m^2$K and those in the condenser region were up to 5 times higher.

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.

Electrical Characteristics and Microstructure of Thin Films $BaTiO_3$ depending on The Sintering Temperature ($BaTiO_3$계 박막의 소결온도에 따른 미세구조와 전기적 특성)

  • Kim, D.K.;Jeon, J.B.;Park, C.B.;Song, M.J.;Kang, Y.C.;Park, H.A.;Soo, B.M.;Kim, T.W.;Kang, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1573-1576
    • /
    • 1997
  • Thin films of $BaTiO_3$ system were prepared by radio frequency (rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat - treatment temperatures. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films shows that the specimen heat treated in between 900 and 1100[$^{\circ}C$] shows a grain growth. At 1100[$^{\circ}C$], the specimen stops grain-growing and becomes a crystal. A resistivity-temperature characteristics of the specimen depends on the doping concentrations of Mn.

  • PDF

볼로메터용 바나듐-텅스텐 산화물로 표면 미세가공한 비냉각 적외선 감지기의 특성

  • Han Yong-Hui;Kim Geun-Te;Lee Seung-Hun;Sin Hyeon-Jun;Mun Seong-Uk;Choe In-Hun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.124-128
    • /
    • 2005
  • To produce a highly sensitive uncooled microbolometer, the development of a high-performance thermometric material is essential. In this work, amorphous vanadium-tungsten oxide was developed as a thermometric material at a low temperature of $300^{\circ}C$, and the microbolometer, coupled with the material, was designed and fabricated using surface micromachining technology. The vanadium-tungsten oxide showed good properties for application to the microbolometer, Such as a high temperature coefficient of resistance of over -4.0 $\%$/K and good compatibility with the surface micromachining and integrated circuit fabrication process due to its low fabrication temperature. As a result, the uncooled microbolometer could be fabricated with high detectivity over $1.0\;{\times}\;10^9\;cmHz^{1/2}/W$ at a bias current of $7.5\;{\mu}A$ and a chopper frequency of 10-20 Hz

  • PDF

Speed-Power Performance Analysis of an Existing 8,600 TEU Container Ship using SPA(Ship Performance Analysis) Program and Discussion on Wind-Resistance Coefficients

  • Shin, Myung-Soo;Ki, Min Suk;Park, Beom Jin;Lee, Gyeong Joong;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.294-303
    • /
    • 2020
  • This study discusses data collection, calculation of wind and wave-induced resistance, and speed-power analysis of an 8,600 TEU container ship. Data acquisition system of the ship operator was improved to obtain the data necessary for the analysis, which was accomplished using SPA (Ship Performance Analysis, Park et al., 2019) in conformation with ISO15016:2015. From a previous operation profile of the container, the standard operating conditions of mean draft were 12.5 m and 13.6 m, which were defined with the mean stowage configuration of each condition. Model tests, including the load-variation test, were conducted to validate new ship performance and for the speed-power analysis. The major part of the added resistance of container ship is due to the wind. To check the reliability of wind-resistance calculation results, the resistance coefficients, added resistance, and speed-power analysis results using the Fujiwara regression formula (ISO15016:2015) and Computational fluid dynamics (Ryu et al., 2016; Jeon et al., 2017) analysis were compared. Wind speed and direction measured using an anemometer were used for wind-resistance calculation and the wave resistance was calculated using the wave-height and direction-data from weather information. Also, measured water temperature was used to calculate the increase in resistance owing to the deviation in water density. As a result, the SPA analysis using measured data and weather information was proved to be valid and able to identify the ship's resistance propulsion performance. Even with little difference in the air-resistance coefficient value, both methods provide sufficient accuracy for speed-power analysis. The differences were unnoticeable when the speed-power analysis results using each method were compared. Also, speed-power analysis results of the 8,600 TEU container ship in two draft conditions show acceptable trends when compared with the model test results and are also able to show power increase owing to hull fouling and aging. Thus, results of speed-power analysis of the existing 8,600 TEU container ship using the SPA program appropriately exhibit the characteristics of speed-power performance in deal conditions.

Development of Thin-Film Type Strain Gauges for High-Temperature Applications (고온용 박막형 스트레인 게이지 개발)

  • Choi, Sung-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1596-1598
    • /
    • 2002
  • This paper presents the characteristics of Ta-N thin-film strain gauges as high-temperature strain gauges, which were deposited on Si substrate by DC reactive magnetron sputtering in an argon-nitrogen atmosphere(Ar-($4{\sim}16%$)$N_2$). These films were annealed for 1 hour in $2{\times}10^{-6}$ Torr vacuum furnace range $500{\sim}1000^{\circ}C$. The optimized conditions of Ta-N thin-film strain gauges were annealing condition($900^{\circ}C$, 1 hr.) in 8% $N_2$ gas flow ratio deposition atmosphere. Under optimum conditions, the Ta-N thin-films for strain gauges is obtained a high resistivity, ${\rho}$=768.93 ${\mu}{\Omega}cm$, a low temperature coefficient of resistance, TCR = -84 ppm/$^{\circ}C$ and a high temporal stability with a good longitudinal gauge factor, GF = 4.12.

  • PDF

Influence of Tempering Temperature and Microstructure on Wear Properties of Low Alloy PM Steel with 1-2% Ni Addition

  • Tekeli, Suleyman;Gural, Ahmet;Guru, Metin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1004-1005
    • /
    • 2006
  • The effect of tempering temperature and microstructure on dry sliding wear behavior of quenched and tempered PM with 0.3% graphite and 1-2% Ni steels was investigated. The sintered specimens were quenched from $890^{\circ}C$ and then tempered at $200^{\circ}C$ and $600^{\circ}C$ for 1 hr. Wear tests were carried out on the quenched$\neq$tempered specimens under dry sliding wear conditions using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively increased with increasing tempering temperature and decreased with increasing Ni content.

  • PDF

Abrasive Wear of Hybrid Metal Matrix Composites for High Wear Resistance (고 내마모성 혼합 금속복합재료의 연삭마모)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.12-22
    • /
    • 1999
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study wear behavior of $Al/Al_2O_3/C$ hybrid MMCs fabricated by squeeze infiltration method was characterized by the abrasive wear test under various sliding speeds at room and high temperature. Wear resistance of MMCs was improved due to the presence of reinforcements at high sliding speed. Especially wear resistance of carbon hybrid MMCs was superior to other materials because of its solid lubrication of carbon. The friction coefficient of MMCs was not affected by the sliding speed.

  • PDF

Effect of Thermal Discharge from Semiconductor Factory into Stream on Freshwater Fish

  • Je-Bin Yu;Sun-Jib Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.2
    • /
    • pp.375-380
    • /
    • 2023
  • The study was conducted in Manu-stream, located in Paju, Gyeonggi-do, from January 2021 to December 2021. The survey points were selected in the upper and lower streams based on where thermal discharged to investigate water temperature and fish species and biological community analysis and growth rate were analyzed. The average annual water temperature difference between the upper and lower stream is about 11.0℃, and in the case of the lower stream area, the water temperature is maintained at 20.0℃ or more per year. Fish that appeared during the survey period decreased lower stream compared to the upper stream, which is believed to be the result of a decrease in temperature-sensitive species as the simple riverbed structure and water temperature increased compared to the upper stream. As a result of biological community analysis, it showed a relatively stable community state at the upper stream. The growth rate of fish has a high regression coefficient b value in lower streams throughout the four seasons. It showed relatively good growth lower stream, with a high water temperature. However, the results of each survey point are similar from season to season. The indicator species is a resistant intermediate species, and the range of resistance to water temperature is wide, so it is judged that water temperature's effect on the indicator species' growth is low.

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.