• Title/Summary/Keyword: Temperature of Maximum Density

Search Result 749, Processing Time 0.025 seconds

A Study on the PTC Thermistor Characteristics of Polyethylene and Polyethylene Copolymer Composite Systems in Melt and Solution Manufacturing Method (용액 및 용융 가공방법에 따른 PE 및 PE 공중합물의 PTC 서미스터 특성 연구)

  • 김재철;박기헌;남재도
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.812-820
    • /
    • 2002
  • The positive temperature coefficient (PTC) characteristics of polymer composites were investigated with the nano-sized carbon black particles using solution tasting and melt compounding methods. The polymeric PTC composites should the electrical threshold at 35 wt% for the melt compounding method and 40 wt% for the solution casting method. The ethylene vinylacetate copolymer (EVA) composite showed a gradual increase of resistance as a function of temperature and showed a maximum at the polymer molting point. The resistance of the high-density polythylene (HDPE) composite remains unchanged with temperature but started to Increase sharply near the melting point of HDPE and showed a maximum resistance at the melting point of HDPE. The dispersion of nano-sized carbon black particles was investigated by scanning electron microscopy (SEM) and low resistance after electrical threshold, and both methods exhibited a well dispersed morphology. When the electric current was applied to the PTC composites, the resistance started increasing at the curie temperature and further increased until the trip temperature was roached. Then the resistance remained stable over the trip temperature. The secondary increase started at T$\sub$m/ of matrix polymer and kept increasing up to the trip temperature.

Correlations of Frost Properties Considering the Environmental Parameters over a Cold Flat Plate (수평편판에서의 착상인자를 고려한 서리 물성치의 상관식)

  • Lee, Kwan-Soo;Kim, Yong-Chul;Jhee, Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1046-1052
    • /
    • 2001
  • This study has been performed experimentally to measure the frost properties over a cold flat plate in order to obtain the correlations of the frost properties with various environmental parameters. Correlations of the frost surface temperature, thickness, density, and thermal conductivity are presented along with the experimental results as a function of environmental parameters, distance from the leading edge of test plate, and time. These correlations can be used to predict the frost properties with a maximum error of 8% in the following ranges : air temperature 15∼25$\^{C}$, relative humidity 60∼80%, air velocity 1∼3m/s and cooling plate temperature -15∼-25$\^{C}$.

Investigation of Urban High Temperature Phenomenon in Summer using the High Density Ground Monitoring System in Daegu Metropolitan Area (지상 고밀도 관측 시스템을 이용한 대구의 여름철 고온현상 조사)

  • Kim, Sang-Heon;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1619-1626
    • /
    • 2014
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network in Daegu metropolitan city, the representative basin-type city in Korea, in summer, 2013. We used a total of 28 air temperature observation points data(16 thermometers and 12 AWSs). From the distribution of monthly average air temperature, air temperature at the center of Daegu was higher than the suburbs. Also, the days of daily minimum air temperature more than or equal to $25^{\circ}C$ and daily maximum air temperature more than or equal to $35^{\circ}C$ at the schools near the center of Daegu was more than those at other schools. This tendency appeared more clearly on the days of daily minimum air temperature more than or equal to $25^{\circ}C$. Also, the air temperature near the center of the city was higher than that of the suburbs in the early morning. Thus it was indicated that the air temperature was hard to decrease as the bottom of the basin. From these results, the influence of urbanization to the formation of the daily minimum temperature in Daegu was indicated.

Density estimation of summer extreme temperature over South Korea using mixtures of conditional autoregressive species sampling model (혼합 조건부 종추출모형을 이용한 여름철 한국지역 극한기온의 위치별 밀도함수 추정)

  • Jo, Seongil;Lee, Jaeyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1155-1168
    • /
    • 2016
  • This paper considers a probability density estimation problem of climate values. In particular, we focus on estimating probability densities of summer extreme temperature over South Korea. It is known that the probability density of climate values at one location is similar to those at near by locations and one doesn't follow well known parametric distributions. To accommodate these properties, we use a mixture of conditional autoregressive species sampling model, which is a nonparametric Bayesian model with a spatial dependency. We apply the model to a dataset consisting of summer maximum temperature and minimum temperature over South Korea. The dataset is obtained from University of East Anglia.

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

Experimental Study on the Performance of an Air-Cooling System for Telecommunication Equipment (통신장비용 공냉형 냉각시스템의 성능 특성에 대한 실험적 연구)

  • Jeon, Jong-Ug;Choi, Jong-Min;Heo, Jae-Hyeok;Kim, Yong-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.323-328
    • /
    • 2005
  • The objective of this study is to analyze the cooling performance of an air- cooling system for telecommunication equipment. Temperature variation and capacity were measured in an actual unit for telecommunication equipment. In addition, the cooling performance was measured by installing a silicon rubber heater as a heat source in a cabinet. The standard thermal load for telecommunication equipment was approximately 293 W, and the maximum temperature of the heated surface was $64.5^{\circ}C$. The average and maximum temperatures of the heated surface were proportional to the inlet air temperature. When the heat load increased from 293 W to 400 W, the maximum temperature of the heated surface was higher than $64.5^{\circ}C$ even though the inlet air temperature decreased from 25 to $11^{\circ}C$.

  • PDF

Effect of Electrolysis Conditions on Hard Chromium Deposition from Trivalent Chromium Bath (경질용 3가 크롬전착에 미치는 전해조건의 영향)

  • Kim, Dae-Young;Park, Sang-Eon;Kim, Man;Kwon, Sik-Chul;Choi, Ju-Won;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.155-160
    • /
    • 2003
  • The effect of the temperature, current density and deposit time on hard chromium deposition in trivalent chromium bath was investigated. Cathode current efficiency increased with increasing current density. Increasing bath temperature from $20^{\circ}C$ to $50^{\circ}C$, chromium deposits were produced in higher current density and the maximum current efficiency was increased. At the plating conditions of $40^{\circ}C$, $30A/dm\m^2$, the deposition thickness increased in proportion to increasing electrolysis time The rate is$ 90\mu\textrm{m}$/hrs. for 2 hours. Microhardness of chromium deposits increased with increasing bath temperature and decreasing current density, and it was constant with electrolysis time. All of bath conditions, microstructure of chromium deposits has nodular structure with some cracking pattern and nodule size increased with increasing deposit thickness.

Influence of Corrosion Potential and Current Density on Polarization Curve Variations using Polycarbonate[III]

  • Park, Chil-Nam;Yang, Hyo-Kyung;Kim, Sun-Kyu;Kim, Myung-Sun;Cheong, Kyung-Hoon
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2000
  • In this study, experiments were carried out to measure the variations in the corrosion potential and current density of polarization curves using polycarbonate. The results were particularly examined to identify the influences affecting the corrosion potential including various conditions such as temperature, pH, catalytic enzyme, and salt. The lines representing the active anodic dissolution were only slightly shifted in the potential direction by temperature, pH, enzyme, and salt. The tafel slope for the anodic dissolution was determined based on the polarization effect with various conditions. The slope of the polarization curves describing the active-to-passive transition region were noticeably shifted in direction. Also, from the variation in the conditions, the optimum conditions were established for the most rapid transformation, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(Ir/If). The value of Ir/If was then used in measuring the extent of the critical corrosion sensitivity of the polycarbonate. The potentiodynamic parameters of the corrosion were obtained using a Tafel plot.

  • PDF

Bias-enhanced Nucleation of Diamond in Hot Filament CVD (열필라멘트 CVD에서 전압 인가에 의한 다이아몬드의 핵생성 촉진)

  • Choi, Kyoon;Kang, Suk-Joong L.;Hwang, Nong-M.
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.636-644
    • /
    • 1997
  • The effect of various processing parameters, in particular the substrate and filament temperature, on the nucleation of diamond has been studied for the hot filament CVD process with a negative bias on the substrate. As far as the substrate temperature was maintained around the critical temperature of 73$0^{\circ}C$, the nucleation of diamond increased with increasing filament temperature. The maximum nucleation density of ~ 2$\times$109/$\textrm{cm}^2$ was obtained under the condition of filament temperature of 230$0^{\circ}C$, substrate temperature of 75$0^{\circ}C$, bias voltage of 300V, methane concentration of 20%, and deposition time of 2 hours. This nucleation density is about the same as those obtained in previous investigations. For fixed substrate temperatures, the nucleation density varies up to about 103 times depending on experimental conditions. This result is different from that of Reinke, et al. When the substrate temperature was above 80$0^{\circ}C$, a silkworm~shaped carbon phase was co-deposited with hemispherical microcrystalline diamond, and its amount increased with increasing substrate temperature. The Raman spectrum of the silkworm-shaped carbon was the same as that of graphitic soot. The silkworm-shaped carbon was etched and disappeared under the same as that of graphitic soot. The silkworm-shaped carbon was etched and disappeared under the deposition condition of diamond, implying that it did not affect the nucleation of diamond.

  • PDF

The Effects of Annealing Temperature on The Physical Properties and Fine Structure of Poly(trimethylene terephthalate)(PTT) Fibers (열처리 온도가 Poly(trimethylene terephthalate)(PTT) 섬유의 역학적 성질과 미세구조에 미치는 효과)

  • Jeong, Kyung Hui;Lee, Eon Pil;Lee, Jae Ho
    • Fashion & Textile Research Journal
    • /
    • v.15 no.6
    • /
    • pp.985-992
    • /
    • 2013
  • Polytrimethylene terephthalate(PTT) offers several advantageous properties such as good tensile strength, uniformity, stiffness, toughness, UV stability, resilience, stain resistance, outstanding elastic recovery, and dyeability. The effects of annealing temperature on physical properties and the structure of PTT filaments and yarn were investigated by measuring wide-angle X-ray diffraction (WAXD), density, optical birefringence, dynamic visco elasticity, and tensile testing. The intensity of maximum tan ${\delta}$ decreased and the temperature of maximum tan ${\delta}$ shifted to a higher temperature as the annealing temperature of filaments increased; however, it shifted to a lower temperature when the annealing temperature exceeded $130^{\circ}C$. In addition, crystallinity, density and D-spacing of (010) crystal face increased as the annealing temperature increased. Optical birefringence and specific stress were almost constant up to $100^{\circ}C$ and then decreased above $130^{\circ}C$. The shrinkage of PTT filament is 0 in boiling water when annealed above $130^{\circ}C$; consequently, the use of annealed fiber above $130^{\circ}C$ can remove thermal instability when dyeing PTT fiber. In the case of yarns, the thermal stability and physical properties of yarns showed the best effect when the ply number is less than 5, twist number is less than 400tpm, and the annealing time is 20minutes.