• Title/Summary/Keyword: Temperature forecasting model

Search Result 244, Processing Time 0.032 seconds

A study on road ice prediction algorithm model and road ice prediction rate using algorithm model (도로 노면결빙 판정 알고리즘 연구와 알고리즘을 활용한 도로 결빙 적중률 연구)

  • Kang, Moon-Seok;Lim, Hee-Seob;Kwak, A-Mi-Roo;Lee, Geun-hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1355-1369
    • /
    • 2021
  • This study improved the algorithm for the road ice prediction algorithm and analyzed the prediction rate when comparing actual field measurement data and algorithm prediction value. For analysis, road and weather conditions were measured in Geumdong-ri, Sinbuk-myeon, Pocheon-si. First algorithm selected previous research result algorithm. And the 4th algorithm was improved according to the actual freezing conditions and measured values. Finally, five algorithms were developed: freezing by condensation, freezing by precipitation, freezing by snow, continuous freezing, and freezing by wind speed. When forecasting using an algorithm at the Pocheon site, the freezing hit rate was improved to 93.2%. When calculating the combination ratio for the algorithm. the algorithm for freezing due to condensation and the continuation of the frozen state accounted for 95.7%.

Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning (지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측)

  • Jang, Jin-Hyuk;Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.478-484
    • /
    • 2018
  • This study predicts solar radiation, solar radiation, and solar power generation using hourly weather data such as temperature, precipitation, wind direction, wind speed, humidity, cloudiness, sunshine and solar radiation. I/O pattern in supervised learning is the most important factor in prediction, but it must be determined by repeated experiments because humans have to decide. This study proposed four input and output patterns for solar and sunrise prediction. In addition, we predicted solar power generation using the predicted solar and solar radiation data and power generation data of Youngam solar power plant in Jeollanamdo. As a experiment result, the model 4 showed the best prediction results in the sunshine and solar radiation prediction, and the RMSE of sunshine was 1.5 times and the sunshine RMSE was 3 times less than that of model 1. As a experiment result of solar power generation prediction, the best prediction result was obtained for model 4 as well as sunshine and solar radiation, and the RMSE was reduced by 2.7 times less than that of model 1.

Typhoon Wukong (200610) Prediction Based on The Ensemble Kalman Filter and Ensemble Sensitivity Analysis (앙상블 칼만 필터를 이용한 태풍 우쿵 (200610) 예측과 앙상블 민감도 분석)

  • Park, Jong Im;Kim, Hyun Mee
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.287-306
    • /
    • 2010
  • An ensemble Kalman filter (EnKF) with Weather Research and Forecasting (WRF) Model is applied for Typhoon Wukong (200610) to investigate the performance of ensemble forecasts depending on experimental configurations of the EnKF. In addition, the ensemble sensitivity analysis is applied to the forecast and analysis ensembles generated in EnKF, to investigate the possibility of using the ensemble sensitivity analysis as the adaptive observation guidance. Various experimental configurations are tested by changing model error, ensemble size, assimilation time window, covariance relaxation, and covariance localization in EnKF. First of all, experiments using different physical parameterization scheme for each ensemble member show less root mean square error compared to those using single physics for all the forecast ensemble members, which implies that considering the model error is beneficial to get better forecasts. A larger number of ensembles are also beneficial than a smaller number of ensembles. For the assimilation time window, the experiment using less frequent window shows better results than that using more frequent window, which is associated with the availability of observational data in this study. Therefore, incorporating model error, larger ensemble size, and less frequent assimilation window into the EnKF is beneficial to get better prediction of Typhoon Wukong (200610). The covariance relaxation and localization are relatively less beneficial to the forecasts compared to those factors mentioned above. The ensemble sensitivity analysis shows that the sensitive regions for adaptive observations can be determined by the sensitivity of the forecast measure of interest to the initial ensembles. In addition, the sensitivities calculated by the ensemble sensitivity analysis can be explained by dynamical relationships established among wind, temperature, and pressure.

The Sensitivity Analyses of Initial Condition and Data Assimilation for a Fog Event using the Mesoscale Meteorological Model (중규모 기상 모델을 이용한 안개 사례의 초기장 및 자료동화 민감도 분석)

  • Kang, Misun;Lim, Yun-Kyu;Cho, Changbum;Kim, Kyu Rang;Park, Jun Sang;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.36 no.6
    • /
    • pp.567-579
    • /
    • 2015
  • The accurate simulation of micro-scale weather phenomena such as fog using the mesoscale meteorological models is a very complex task. Especially, the uncertainty arisen from initial input data of the numerical models has a decisive effect on the accuracy of numerical models. The data assimilation is required to reduce the uncertainty of initial input data. In this study, the limitation of the mesoscale meteorological model was verified by WRF (Weather Research and Forecasting) model for a summer fog event around the Nakdong river in Korea. The sensitivity analyses of simulation accuracy from the numerical model were conducted using two different initial and boundary conditions: KLAPS (Korea Local Analysis and Prediction System) and LDAPS (Local Data Assimilation and Prediction System) data. In addition, the improvement of numerical model performance by FDDA (Four-Dimensional Data Assimilation) using the observational data from AWS (Automatic Weather System) was investigated. The result of sensitivity analysis showed that the accuracy of simulated air temperature, dew point temperature, and relative humidity with LDAPS data was higher than those of KLAPS, but the accuracy of the wind speed of LDAPS was lower than that of KLAPS. Significant difference was found in case of relative humidity where RMSE (Root Mean Square Error) for LDAPS and KLAPS was 15.7 and 35.6%, respectively. The RMSE for air temperature, wind speed, and relative humidity was improved by approximately $0.3^{\circ}C$, $0.2m\;s^{-1}$, and 2.2%, respectively after incorporating the FDDA.

Temperature-dependent Development of Pseudococcus comstocki(Homoptera: Pseudococcidae) and Its Stage Transition Models (가루깍지벌레(Pseudococcus comstocki Kuwana)의 온도별 발육기간 및 발육단계 전이 모형)

  • 전흥용;김동순;조명래;장영덕;임명순
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • This study was carried out to develop the forecasting model of Pseudococcus comtocki Kuwana for timing spray. Field phonology and temperature-dependent development of p. comstocki were studied, and its stage transition models were developed. p comstocki occurred three generations a year in Suwon. The 1 st adults occurred during mid to late June, and the 2nd adults were abundant during mid to late August. The 3rd adults were observed after late October. The development times of each instar of p. comstocki decreased with increasing temperature up to 25$^{\circ}C$, and thereafter the development times increased. The estimated low-threshold temperatures were 14.5, 8.4, 10.2, 11.8, and 10.1$^{\circ}C$ for eggs, 1st+2nd nymphs, 3rd nymphs, preoviposition, and 1st nymphs to preoviposition, respectively. The degree-days (thermal constants) for completion of each instar development were 105 DD for egg,315 DD for 1st+2nd nymph, 143 DD for 3rd nymph, 143 DD for preoviposition, and 599 DD for 1 st nymph to preoviposition. The stage transition models of p. comstocki, which simulate the proportion of individuals shifted from a stage to the next stage, were constructed using the modified Sharpe and DeMichele model and the Weibull function. In field validation, degree-day models using mean-minus-base, sine wave, and rectangle method showed 2-3d, 1-7d, and 0-6 d deviation with actual data in predicting the peak oviposition time of the 1st and 2nd generation adults, respectively. The rate summation model, in which daily development rates estimated by biophysical model of Sharpe and DeMichele were accumulated, showed 1-2 d deviation with actual data at the same phonology predictions.

Short-Term Precipitation Forecasting based on Deep Neural Network with Synthetic Weather Radar Data (기상레이더 강수 합성데이터를 활용한 심층신경망 기반 초단기 강수예측 기술 연구)

  • An, Sojung;Choi, Youn;Son, MyoungJae;Kim, Kwang-Ho;Jung, Sung-Hwa;Park, Young-Youn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.43-45
    • /
    • 2021
  • The short-term quantitative precipitation prediction (QPF) system is important socially and economically to prevent damage from severe weather. Recently, many studies for short-term QPF model applying the Deep Neural Network (DNN) has been conducted. These studies require the sophisticated pre-processing because the mistreatment of various and vast meteorological data sets leads to lower performance of QPF. Especially, for more accurate prediction of the non-linear trends in precipitation, the dataset needs to be carefully handled based on the physical and dynamical understands the data. Thereby, this paper proposes the following approaches: i) refining and combining major factors (weather radar, terrain, air temperature, and so on) related to precipitation development in order to construct training data for pattern analysis of precipitation; ii) producing predicted precipitation fields based on Convolutional with ConvLSTM. The proposed algorithm was evaluated by rainfall events in 2020. It is outperformed in the magnitude and strength of precipitation, and clearly predicted non-linear pattern of precipitation. The algorithm can be useful as a forecasting tool for preventing severe weather.

  • PDF

Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment (GloSea5 모형의 성층권 예측성 검증)

  • Jung, Myungil;Son, Seok-Woo;Lim, Yuna;Song, Kanghyun;Won, DukJin;Kang, Hyun-Suk
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.203-214
    • /
    • 2016
  • This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.

Combining Model-based and Heuristic Techniques for Fast Tracking the Global Maximum Power Point of a Photovoltaic String

  • Shi, Ji-Ying;Xue, Fei;Ling, Le-Tao;Li, Xiao-Fei;Qin, Zi-Jian;Li, Ya-Jing;Yang, Ting
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.476-489
    • /
    • 2017
  • Under partial shading conditions (PSCs), multiple maximums may be exhibited on the P-U curve of string inverter photovoltaic (PV) systems. Under such conditions, heuristic methods are invalid for extracting a global maximum power point (GMPP); intelligent algorithms are time-consuming; and model-based methods are complex and costly. To overcome these shortcomings, a novel hybrid MPPT (MPF-IP&O) based on a model-based peak forecasting (MPF) method and an improved perturbation and observation (IP&O) method is proposed. The MPF considers the influence of temperature and does not require solar radiation measurements. In addition, it can forecast all of the peak values of the PV string without complex computation under PSCs, and it can determine the candidate GMPP after a comparison. Hence, the MPF narrows the searching range tremendously and accelerates the convergence to the GMPP. Additionally, the IP&O with a successive approximation strategy searches for the real GMPP in the neighborhood of the candidate one, which can significantly enhance the tracking efficiency. Finally, simulation and experiment results show that the proposed method has a higher tracking speed and accuracy than the perturbation and observation (P&O) and particle swarm optimization (PSO) methods under PSCs.

Sensitivity Test of the Parameterization Methods of Cloud Droplet Activation Process in Model Simulation of Cloud Formation (구름방울 활성화 과정 모수화 방법에 따른 구름 형성의 민감도 실험)

  • Kim, Ah-Hyun;Yum, Seong Soo;Chang, Dong Yeong
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.211-222
    • /
    • 2018
  • Cloud droplet activation process is well described by $K{\ddot{o}}hler$ theory and several parameterizations based on $K{\ddot{o}}hler$ theory are used in a wide range of models to represent this process. Here, we test the two different method of calculating the solute effect in the $K{\ddot{o}}hler$ equation, i.e., osmotic coefficient method (OSM) and ${\kappa}-K{\ddot{o}}hler$ method (KK). To do that, each method is implemented in the cloud droplet activation parameterization module of WRF-CHEM (Weather Research and Forecasting model coupled with Chemistry) model. It is assumed that aerosols are composed of five major components (i.e., sulfate, organic matter, black carbon, mineral dust, and sea salt). Both methods calculate similar representative hygroscopicity parameter values of 0.2~0.3 over the land, and 0.6~0.7 over the ocean, which are close to estimated values in previous studies. Simulated precipitation, and meteorological variables (i.e., specific heat and temperature) show good agreement with reanalysis. Spatial patterns of precipitation and liquid water path from model results and satellite data show similarity in general, but on regional scale spatial patterns and intensity show some discrepancy. However, meteorological variables, precipitation, and liquid water path do not show significant differences between OSM and KK simulations. So we suggest that the relatively simple KK method can be a good alternative to the OSM method that requires various information of density, molecular weight and dissociation number of each individual species in calculating the solute effect.

Prediction of dam inflow based on LSTM-s2s model using luong attention (Attention 기법을 적용한 LSTM-s2s 모델 기반 댐유입량 예측 연구)

  • Lee, Jonghyeok;Choi, Suyeon;Kim, Yeonjoo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.495-504
    • /
    • 2022
  • With the recent development of artificial intelligence, a Long Short-Term Memory (LSTM) model that is efficient with time-series analysis is being used to increase the accuracy of predicting the inflow of dams. In this study, we predict the inflow of the Soyang River dam, using the LSTM model with the Sequence-to-Sequence (LSTM-s2s) and attention mechanism (LSTM-s2s with attention) that can further improve the LSTM performance. Hourly inflow, temperature, and precipitation data from 2013 to 2020 were used to train the model, and validate and test for evaluating the performance of the models. As a result, the LSTM-s2s with attention showed better performance than the LSTM-s2s in general as well as in predicting a peak value. Both models captured the inflow pattern during the peaks but detailed hourly variability is limitedly simulated. We conclude that the proposed LSTM-s2s with attention can improve inflow forecasting despite its limits in hourly prediction.