DOI QR코드

DOI QR Code

Assessment of Stratospheric Prediction Skill of the GloSea5 Hindcast Experiment

GloSea5 모형의 성층권 예측성 검증

  • Jung, Myungil (School of Earth and Environmental Sciences, Seoul National University) ;
  • Son, Seok-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lim, Yuna (School of Earth and Environmental Sciences, Seoul National University) ;
  • Song, Kanghyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Won, DukJin (National Institute of Meteorological Research) ;
  • Kang, Hyun-Suk (National Institute of Meteorological Research)
  • 정명일 (서울대학교 자연과학대학 지구환경과학부) ;
  • 손석우 (서울대학교 자연과학대학 지구환경과학부) ;
  • 임유나 (서울대학교 자연과학대학 지구환경과학부) ;
  • 송강현 (서울대학교 자연과학대학 지구환경과학부) ;
  • 원덕진 (국립기상과학원) ;
  • 강현석 (국립기상과학원)
  • Received : 2016.02.01
  • Accepted : 2016.03.08
  • Published : 2016.03.31

Abstract

This study explores the 6-month lead prediction skill of stratospheric temperature and circulations in the Global Seasonal forecasting model version 5 (GloSea5) hindcast experiment over the period of 1996~2009. Both the tropical and extratropical circulations are considered by analyzing the Quasi-Biennial Oscillation (QBO) and Northern Hemisphere Polar Vortex (NHPV). Their prediction skills are quantitatively evaluated by computing the Anomaly Correlation Coefficient (ACC) and Mean Squared Skill Score (MSSS), and compared with those of El Nino-Southern Oscillation (ENSO) and Arctic Oscillation (AO). Stratospheric temperature is generally better predicted than tropospheric temperature. Such improved prediction skill, however, rapidly disappears in a month, and a reliable prediction skill is observed only in the tropics, indicating a higher prediction skill in the tropics than in the extratropics. Consistent with this finding, QBO is well predicted more than 6 months in advance. Its prediction skill is significant in all seasons although a relatively low prediction skill appears in the spring when QBO phase transition often takes place. This seasonality is qualitatively similar to the spring barrier of ENSO prediction skill. In contrast, NHPV exhibits no prediction skill beyond one month as in AO prediction skill. In terms of MSSS, both QBO and NHPV are better predicted than their counterparts in the troposphere, i.e., ENSO and AO, indicating that the GloSea5 has a higher prediction skill in the stratosphere than in the troposphere.

Keywords

References

  1. Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581-584. https://doi.org/10.1126/science.1063315
  2. Collimore, C. C., D. W. Martin, M. H. Hitchman, A. Huesmann, and D. E. Waliser, 2003: On the relationship between the QBO and tropical deep convextion. J. Climate, 16, 2552-2568. https://doi.org/10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2
  3. Dunkerton, T. J., 1990: Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere. J. Meteorol. Soc. Japan, 68, 499-508. https://doi.org/10.2151/jmsj1965.68.4_499
  4. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597. https://doi.org/10.1002/qj.828
  5. Garfinkel, C. I., and D. L. Hartmann, 2011: The influence of the quasi-biennial oscillation on the troposphere in winter in a hierarchy of models. Part I: Simplified dry GCMs. J. Atmos. Sci., 68, 1273-1289. https://doi.org/10.1175/2011JAS3665.1
  6. Gong, D.-Y., S. W. Wang, and J. H. Shu, 2001: East Asian winter monsoon and arctic oscillation. Geophys. Res. Lett., 28, 2073-2076. https://doi.org/10.1029/2000GL012311
  7. Gong, D.-Y., J. Yang, S.-J. Kim, Y. Gao, D. Guo, T. Zhou, and M. Hu, 2011: Spring arctic oscillation-East Asian summer monsoon connection through circulation changes over the western north pacific. Climate Dyn., 37, 2199-2216. https://doi.org/10.1007/s00382-011-1041-1
  8. Gupta, S., A. P. Durack, J. N. Brown, S. E. Wijffels, D. Monselesan, and S. Phipps, 2012: Climate Drift in the CMIP3 models. J. Climate, 25, 4621-4640. https://doi.org/10.1175/JCLI-D-11-00312.1
  9. Holton, J. R., and C. Mass, 1976: Stratospheric vacillation cycles. J. Atmos. Sci., 33, 2218-2225. https://doi.org/10.1175/1520-0469(1976)033<2218:SVC>2.0.CO;2
  10. Holton, J. R., and H.-C. Tan, 1980: The influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J. Atmos. Sci., 37, 2200-2208. https://doi.org/10.1175/1520-0469(1980)037<2200:TIOTEQ>2.0.CO;2
  11. Horel, J. D., and J. M. Wallace, 1981: Planetary scale atmospheric phenomena associated with the southern oscillation. Mon. Wea. Rev., 125, 773-788.
  12. Hurrell, J., A. M. Gerald, B. David, L. D. Thomas, K. Ben, and W. Bruce, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 1819-1832. https://doi.org/10.1175/2009BAMS2752.1
  13. Ichimaru, T., S. Noguchi, T. Hirooka, and H. Mukougawa, 2016: Predictability changes of stratospheric circulations in northern hemisphere winter. J. Meteor. Soc. Japan, 94.
  14. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Climate Dyn., 31, 647-664. https://doi.org/10.1007/s00382-008-0397-3
  15. Jung, M.-I., S.-W. Son, J. Choi, and H.-S. Kang, 2015: Assessment of 6-month lead prediction skill of the GloSea5 hindcast experiment. Atmosphere, 25, 323-337 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.323
  16. Kidston, J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433-440. https://doi.org/10.1038/ngeo2424
  17. Kim, H.-M., P. J. Webster, and J. A. Curry, 2012: Evaluation of short-term climate change prediction in multimodel CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701.
  18. Kobayashi, S., and Coauthors, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48. https://doi.org/10.2151/jmsj.2015-001
  19. MacLachlan, C., and Coauthors, 2014: Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084.
  20. Moore, A. M., and R. Kleeman, 1996: The dynamics of error growth and predictability in a coupled model of ENSO. Q. J. R. meteorol. Soc., 122, 1405-1446. https://doi.org/10.1002/qj.49712253409
  21. Poveda, G., A. Jaramillo, M. M. Gil, N. Quiceno, and R. I. Mantilla, 2001; Seasonality in ENSO-related precipitation, river discharge, soil moisture, and vegetation index in Colombia. Waler Resour. Res., 37, 2169-2178. https://doi.org/10.1029/2000WR900395
  22. Scaife, A. A., and Coauthors, 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752-1758. https://doi.org/10.1002/2013GL059160
  23. Shindell, D. T., G. A. Schmidt, M. E. Mann, D. Rind, and A. Waple, 2001: Solar forcing of regional climate change during the Maunder Minimum. Science, 294, 2149-2152. https://doi.org/10.1126/science.1064363
  24. Sigmond, M., J. F. Scinocca, V. V. Kharin, and T. G. Shepherd, 2013: Enhanced seasonal forecast skill following stratospheric sudden warmings. Nat. Geosci., 6, 98-102. https://doi.org/10.1038/ngeo1698
  25. Smith, D. M., R. Eade, and H. Pohlmann, 2013: A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Climate Dyn., 41, 3325-3338. https://doi.org/10.1007/s00382-013-1683-2
  26. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Monthto-month variability. J. Climate, 13, 1000-1016. https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  27. Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421-1428. https://doi.org/10.1175/1520-0442(2002)015<1421:SCTNHW>2.0.CO;2
  28. Tripathi, O. P., and Coauthors, 2015: The predictability of the extratropical stratosphere on monthly time-scales and its impact on the skill of tropospheric forecasts. Q. J. R. Meteorol. Soc., 141, 987-1003. https://doi.org/10.1002/qj.2432
  29. Wang, B., and Coauthors, 2009: Advanced and prospectus of seasonal prediction: assessment of APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980-2004). Climate Dyn., 33, 93-117. https://doi.org/10.1007/s00382-008-0460-0
  30. Wang, B., B. Xiang, and J.-Y. Lee, 2012: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci., USA, 110, 2718- 2722.
  31. Yoo, C., and S.-W. Son, 2016: Modulation of the boreal wintertime Madden-Julian Oscillation by the stratospheric Quasi-Biennial Oscillation. Geophys. Res. Lett., 43, 1392-1398. https://doi.org/10.1002/2016GL067762