• Title/Summary/Keyword: Temperature forecasting model

Search Result 246, Processing Time 0.034 seconds

Impact of Different Meteorological Initializations on WRF Simulation During the KORUS-AQ Campaign (KORUS-AQ 기간 동안 초기 입력 자료에 따른 WRF 기상장 모의 결과 비교)

  • Mun, Jeonghyeok;Jeon, Wonbae;Lee, Hwa Woon
    • Journal of Environmental Science International
    • /
    • v.29 no.1
    • /
    • pp.33-44
    • /
    • 2020
  • Recently, a variety of modeling studies have been conducted to examine the air quality over South Korea during the Korea - United States Air Quality (KORUS-AQ) campaign period (May 1 to June 10, 2016). This study investigates the impact of different meteorological initializations on atmospheric modeling results. We conduct several simulations during the KORUS-AQ period using the Weather Research and Forecasting (WRF) model with two different initial datasets, which is FNL of NCEP and ERA5 of ECMWF. Comparing the raw initial data, ERA5 showed better accuracy in the temperature, wind speed, and mixing ratio fields than those of NCEP-FNL. On the other hand, the results of WRF simulations with ERA5 showed better accuracy in the simulated temperature and mixing ratio than those with FNL, except for wind speed. Comparing the nudging efficiency of temperature and wind speed fields, the grid nudging effect on the FNL simulation was larger than that on the ERA5 simulation, but the results of mixing ratio field was the opposite. Overall, WRF simulation with ERA5 data showed a better performance for temperature and mixing ratio simulations than that with FNL data. For wind speed simulation, however, WRF simulation with FNL data indicated more accurate results compared to that with ERA5 data.

Prediction of electricity consumption in A hotel using ensemble learning with temperature (앙상블 학습과 온도 변수를 이용한 A 호텔의 전력소모량 예측)

  • Kim, Jaehwi;Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.2
    • /
    • pp.319-330
    • /
    • 2019
  • Forecasting the electricity consumption through analyzing the past electricity consumption a advantageous for energy planing and policy. Machine learning is widely used as a method to predict electricity consumption. Among them, ensemble learning is a method to avoid the overfitting of models and reduce variance to improve prediction accuracy. However, ensemble learning applied to daily data shows the disadvantages of predicting a center value without showing a peak due to the characteristics of ensemble learning. In this study, we overcome the shortcomings of ensemble learning by considering the temperature trend. We compare nine models and propose a model using random forest with the linear trend of temperature.

Predictability of Temperature over South Korea in PNU CGCM and WRF Hindcast (PNU CGCM과 WRF를 이용한 남한 지역 기온 예측성 검증)

  • Ahn, Joong-Bae;Shim, Kyo-Moon;Jung, Myung-Pyo;Jeong, Ha-Gyu;Kim, Young-Hyun;Kim, Eung-Sup
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.479-490
    • /
    • 2018
  • This study assesses the prediction skill of regional scale model for the mean temperature anomaly over South Korea produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF) chain. The initial and boundary conditions of WRF are derived from PNU CGCM. The hindcast period is 11 years from 2007 to 2017. The model's prediction skill of mean temperature anomaly is evaluated in terms of the temporal correlation coefficient (TCC), root mean square error (RMSE) and skill scores which are Heidke skill score (HSS), hit rate (HR), false alarm rate (FAR). The predictions of WRF and PNU CGCM are overall similar to observation (OBS). However, TCC of WRF with OBS is higher than that of PNU CGCM and the variation of mean temperature is more comparable to OBS than that of PNU CGCM. The prediction skill of WRF is higher in March and April but lower in October to December. HSS is as high as above 0.25 and HR (FAR) is as high (low) as above (below) 0.35 in 2-month lead time. According to the spatial distribution of HSS, predictability is not concentrated in a specific region but homogeneously spread throughout the whole region of South Korea.

Impacts of anthropogenic heating on urban boundary layer in the Gyeong-In region (인공열이 도시경계층에 미치는 영향 - 경인지역을 중심으로 -)

  • Koo, Hae-Jung;Ryu, Young-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.5
    • /
    • pp.665-681
    • /
    • 2012
  • This study investigates the influence of anthropogenic heat (AH) release on urban boundary layer in the Gyeong-In region using the Weather Research and Forecasting model that includes the Seoul National University Urban Canopy Model (SNUUCM). The gridded AH emission data, which is estimated in the Gyeong-In region in 2002 based on the energy consumption statistics data, are implemented into the SNUUCM. The simulated air temperature and wind speed show good agreement with the observed ones particularly in terms of phase for 11 urban sites, but they are overestimated in the nighttime. It is found that the influence of AH release on air temperature is larger in the nighttime than in the daytime even though the AH intensity is larger in the daytime. As compared with the results with AH release and without AH release, the contribution of AH release on urban heat island intensity is large in the nighttime and in the morning. As the AH intensity increases, the water vapor mixing ratio decreases in the daytime but increases in the nighttime. The atmospheric boundary layer height increases greatly in the morning (0800 - 1100 LST) and midnight (0000 LST). These results indicate that AH release can have an impact on weather and air quality in urban areas.

A Numerical Prediction for Water Quality at the Developing Region of Deep Sea Water in the East Sea Using Ecological Model (생태계모델을 이용한 동해 심층수 개발해역의 수질환경 변화예측)

  • Lee, In-Cheol;Yoon, Seok-Jin;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.34-41
    • /
    • 2008
  • As a basic study for developing a forecasting/estimating system that predicts water quality changes when Deep Sea Water (DSW) drains to the ocean after using it, this study was carried out as follows: 1) numerical simulation of the present state at DSW developing region in the East sea using SWEM, 2) numerical prediction of water quality changes by effluent DSW, 3) analysis of influence degree 'With defined DEI (DSW effect index) at F station. On the whole, when DSW drained to the ocean, Chl-a, COD and water-temperature were decreased and DIN, DIP and DO were increased by effluent DSW, and Salinity was steady. According to analysis of influence degree, the influence degree of DIN was the highest and it was high in order of Chl-a, COD, Water-temperature, DO, DIP and Salinity. The influence degree classified by DSW effluent position was predicted that suiface outflow was lower than bottom outflow. Ad When DSW discharge increased 10 times, the influence degree increased about $5{\sim}14$ times.

Data Assimilation of Radar Non-precipitation Information for Quantitative Precipitation Forecasting (정량적 강수 예측을 위한 레이더 비강수 정보의 자료동화)

  • Yu-Shin Kim;Ki-Hong Min
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.557-577
    • /
    • 2023
  • This study defines non-precipitation information as areas with weak precipitation or cloud particles that radar cannot detect due to weak returned signals, and suggests methods for its utilization in data assimilation. Previous studies have demonstrated that assimilating radar data from precipitation echoes can produce precipitation in model analysis and improve subsequent precipitation forecast. However, this study also recognizes the non-precipitation information as valuable observation and seeks to assimilate it to suppress spurious precipitation in the model analysis and forecast. To incorporate non-precipitation information into data assimilation, we propose observation operators that convert radar non-precipitation information into hydrometeor mixing ratios and relative humidity for the Weather Research and Forecasting Data Assimilation system (WRFDA). We also suggest a preprocessing method for radar non-precipitation information. A single-observation experiment indicates that assimilating non-precipitation information fosters an environment conducive to inhibiting convection by lowering temperature and humidity. Subsequently, we investigate the impact of assimilating non-precipitation information to a real case on July 23, 2013, by performing a subsequent 9-hour forecast. The experiment that assimilates radar non-precipitation information improves the model's precipitation forecasts by showing an increase in the Fractional Skill Score (FSS) and a decrease in the False Alarm Ratio (FAR) compared to experiments in which do not assimilate non-precipitation information.

Dynamic Downscaling for Regional Ocean Climate Modeling Around the Korean Peninsula and Its Application in Fisheries (한반도 주변 해역 해양기후모델 구축 및 수산분야 적용)

  • Changsin Kim;Joon-Soo Lee;Joon-Yong Yang;In-Seong Han
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.2
    • /
    • pp.177-185
    • /
    • 2024
  • We developed a regional ocean climate model using dynamic downscaling in the Northwest Pacific Ocean to build a climate model for the Korean Peninsula. The past marine environment was reproduced through historical simulations, and the future marine environment in 2100 was predicted according to the shared socioeconomic pathways (SSP) climate change scenario. The future sea surface temperature of the Korean seas is predicted to rise about 1-4℃, and the increase in water temperature in the East Sea is expected to be the largest. The National Institute of Fisheries Science has monitored abnormal seawater temperatures such as high and low seawater temperatures in coastal and inland waters, and predicted that the number of high seawater temperature days in the East, West, South Sea, and the coast of Jeju Island will increase in the future. In addition, the occurrence of Ciguatera fish poison plankton around Jeju Island was projected to increase. This study is expected to provide accurate forecasting information for fishery issues. The aim of this study was to analyze future ocean environment changes around the Korean Peninsula using climate change SSP scenarios and predict fisheries issues through future projections of the regional ocean climate model.

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS (유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증)

  • Kim, C.H.;Na, J.G.;Park, C.J.;Park, J.H.;Im, C.S.;Yoon, E.;Kim, M.S.;Park, C.H.;Kim, Y.J.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.5
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Improvement in Regional-Scale Seasonal Prediction of Agro-Climatic Indices Based on Surface Air Temperature over the United States Using Empirical Quantile Mapping (경험적 분위사상법을 이용한 미국 지표 기온 기반 농업기후지수의 지역 규모 계절 예측성 개선)

  • Chan-Yeong, Song;Joong-Bae, Ahn;Kyung-Do, Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.201-217
    • /
    • 2022
  • The United States is one of the largest producers of major crops such as wheat, maize, and soybeans, and is a major exporter of these crops. Therefore, it is important to estimate the crop production of the country in advance based on reliable long- term weather forecast information for stable crops supply and demand in Korea. The purpose of this study is to improve the seasonal predictability of the agro-climatic indices over the United States by using regional-scale daily temperature. For long-term numerical weather prediction, a dynamical downscaling is performed using Weather Research and Forecasting (WRF) model, a regional climate model. As the initial and lateral boundary conditions of WRF, the global hourly prediction data obtained from the Pusan National University Coupled General Circulation Model (PNU CGCM) are used. The integration of WRF is performed for 22 years (2000-2021) for period from June to December of each year. The empirical quantile mapping, one of the bias correction methods, is applied to the timeseries of downscaled daily mean, minimum, and maximum temperature to correct the model biases. The uncorrected and corrected datasets are referred WRF_UC and WRF_C, respectively in this study. The daily minimum (maximum) temperature obtained from WRF_UC presents warm (cold) biases over most of the United States, which can be attributed to the underestimated the low (high) temperature range. The results show that WRF_C simulates closer to the observed temperature than WRF_UC, which lead to improve the long- term predictability of the temperature- based agro-climatic indices.