• Title/Summary/Keyword: Temperature comfort

Search Result 627, Processing Time 0.027 seconds

A Study on the Indoor Comfort Control By Smart Comfort Algorithm (스마트 쾌적 알고리즘을 적용한 실내 쾌적 제어에 대한 연구)

  • Yoon, Seok-Am;Lee, Jeong-Il
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.603-609
    • /
    • 2015
  • Thermal comfort is one of the fundamental aspects of indoor environmental quality and it is strongly related to occupant satisfaction and energy used in building. In this paper, we proposes smart comfort algorithm that save energy and provide a pleasant and comfortable environment for workers by the indoor comfort conditions(Predictive Mean Vote) detection and controlling the temperature and humidity, air flow. Simulation results, heating and cooling control of the thermal comfort control can be compared with the existing general air conditioners reduces the power of 0.5kW and indoor comfort can be maintained. Also, It showed a 49.2% improvement in the light by lighting control algorithm.

Indoor Neutral Temperature Range using Temperature and Humidity Perception Assessment

  • Yang, Wonyoung
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.29-37
    • /
    • 2016
  • Purpose: Indoor thermal comfort can be identified by combination of temperature, humidity, and air flow, etc. However, most thermal indexes in regard to thermal comfort are temperature dominant since it has been considered as a significant factor affecting to indoor thermal comfort The purposes of this study are to investigate indoor neutral temperature range of young Koreans with humidity perception, and to introduce a neutral temperature for temperature preference as well as temperature sensation in order to define the neutral temperature range chosen by occupants. It could be used as basic data for heating and cooling. Method: 26 research participants volunteered in 7 thermal conditions ($18^{\circ}C$ RH 30%, $18^{\circ}C$ RH 60%, $24^{\circ}C$ RH 30%, $24^{\circ}C$ RH 40%, $24^{\circ}C$ RH 60%, $30^{\circ}C$ RH 30%, $30^{\circ}C$ RH 60%) and completed subjective assessment in regard to temperature/humidity sensation and preference twice per condition in an indoor environmental chamber. Result: In RH 30%, sensation neutral temperature was $25.1^{\circ}C$ for men and $27.0^{\circ}C$ for women, and preference neutral temperature was $25.5^{\circ}C$ for men and $27.8^{\circ}C$ for women. In RH 60%, sensation neutral temperature was $23.6^{\circ}C$ for men and $25.9^{\circ}C$ for women, and preference neutral temperature was $23.4^{\circ}C$ for men and $26.3^{\circ}C$ for women. Neutral temperature increased with increasing relative humidity. Women were sensitive to humidity changes. Men expressed humidity changes as temperature variations. In most conditions, preference neutral temperatures were higher than sensation neutral temperatures, however, the preference neutral temperature for men in humid condition was lower than the sensation neutral temperature.

A Study on the Wearing Comfort in Velvet Fabrics (Velvet 직물의 인체 착의 실험을 통한 착용감 연구)

  • Cho, Ji-Hyun;Ryu, Duck-Hwan;Lee, Yj-Ja
    • Korean Journal of Human Ecology
    • /
    • v.5 no.2
    • /
    • pp.123-130
    • /
    • 1996
  • The purpose of this study is to examine and to evaluate the wearing performance of pile materials to produce velvet fabrics which have excellent wearing comfort. Acetate velvet, Cuprammonium rayon velvet were combined as textiles for clothing and acetate and viscose rayon were as textiles for lining at the environmental condition of temperature $15^{\circ}C,\;18^{\circ}C,\;21^{\circ}C,\;24^{\circ}C$, relative humidity $50{\pm}5%$ and air velocity 0.25 m/sec. Wearing comfort among 4 materials combinations(Aa, Av, Ra, Rv) was examined and compared. The results are as follows. The investigation of mean skin temperature for environmental temperature and material combinations showed that the mean temperature had a significant difference at the p<0.01 level in accordance with environmental temperature and material combinations.(Aa>Av>Ra>Rv) Moreover, in clothing climate only clothing temperature tended to increase almost linearly but at $24^{\circ}C$ there was no significant difference among textiles for lining compared with the other environmental temperatures. In subjective sensations thermal sensation and comfort sensation showed a significant difference in environmental temperatures and materials.(Aa>Av>Ra>Rv) Though a subject felt warmer, more humid, and more uncomfortable at $24^{\circ}C$ for all of the material combinations comparing with the other temperatures, there was no significant difference in materials.

  • PDF

Thermal Comfort Evaluation of Protective Clothing for Shielding Electromagnetic Waves (전자파 차단 보호복의 온열쾌적성 평가)

  • Choi, Jeong-Wha;Kim, Myung-Ju;Park, Joon-Hee;Kim, Do-Hee
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.4
    • /
    • pp.595-603
    • /
    • 2010
  • The present study was performed on humans to investigate the physiological strain of wearing protective clothing for shielding electromagnetic waves and to compare control clothing that are currently on the market and new clothing that are developed for improving thermal comfort and material weight. Experiments were conducted in a climatic chamber of $28.8{\pm}0.6^{\circ}C$, $37{\pm}5%$RH under three differed experimental clothing conditions: None, Control, New. The results were as follows. Mean skin temperature and rectal temperature in New were significantly lower than that in None and Control (p<.05). The temperature and humidity inside clothing were lower in None (p<.05). Total weight loss was lower in New. Thermal sensation and thermal comfort were less hot and more comfortable in New than those in Control. It was concluded that wearing the protective clothing for shielding electromagnetic waves affects physiological responses such as distribution of body temperature, sweat rate, etc.

Use of Web-Based Evidence-based Clinical Practice Guidelines for Patients following Gastrectomy: Effects on Body Temperature, Shivering, Perceived Thermal Comfort, and Satisfaction with Temperature Management (웹기반 체온 관리 근거중심 간호실무 가이드라인이 위절제술 환자의 체온, 전율, 체온 불편감, 체온 관리 만족도에 미치는 효과)

  • Hong, Sung-Jung;Lee, Eunjoo
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.21 no.2
    • /
    • pp.112-122
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the effects on body temperature, shivering, and perceived thermal comfort of web-based evidence-based practice guideline for patients undergoing gastrectomy. Methods: Eighty patients scheduled for gastrectomy were recruited and assigned to the control or experimental group by sequential order. Before collecting data from the experimental group, a systematic educational program on evidence-based guidelines was provided to the nurses as well anesthesiologists. Data were analyzed using t-test and repeated measured ANOVA. Results: The experimental group showed higher body temperature from the induction of anesthesia until four hours after surgery compared to the control group. In addition, the levels of thermal comfort as well as satisfaction with thermal management were significantly higher in the experiment group. Conclusion: Use of evidence-based guidelines was effective in maintaining body temperature, lowering sensitivity to shivering, and promoting perceived thermal comfort. Therefore, adoption of evidence-based interventions in nursing practice is recommended.

Analysis of Ventilating Seat Comfort Temperature for Improving the Thermal Comfort inside Vehicles (자동차 실내 열쾌적성 개선을 위한 통풍시트의 쾌적온도 분석)

  • In, Chung-Kyo;Kwak, Seung-Hyun;Kim, Chang-Hoon;Kim, Kyu-Beom;Jo, Hyung-Seok;Seo, Sang-hyeok;Myung, Tae-Sik;Min, Byung-Chan
    • Science of Emotion and Sensibility
    • /
    • v.23 no.4
    • /
    • pp.33-40
    • /
    • 2020
  • As the number of automobile registrations increases and luxury expectations grow, consumers are increasingly interested in indoor environment of vehicles. Therefore, manufacturers have an increasing interest in improving the indoor comfort as well as automobile performance. Research on indoor automobile comfort can help manufacturers increase driver satisfaction and reduce driver stress and discomfort, thereby reducing the risk of traffic accidents. Using electroencephalogram (EEG) measurements, we investigated the change in comfort and comfortable temperature according to the ventilating seat temperature change for both men and women. Results showed that the sensation of comfort was statistically significantly higher at 25℃ than at 28℃. Secondly, there was no statistically significant difference in temperature-based comfort feeling between male and female subjects. In the future, if the correlation between the driver's comfort feeling and the change in ventilating seat temperature is analyzed, it is possible to reduce traffic accidents caused by human error and reduce the electric energy consumption of the automobile.

Numerical Study on Human Thermal Comfort in a Low Floor Bus (저상버스 탑승객의 온열 쾌적성에 관한 수치연구)

  • PARK, WON GU;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.6
    • /
    • pp.645-651
    • /
    • 2015
  • Numerical study on human thermal comfort in a low floor bus has been conducted. Human thermal comfort in a bus depends mainly on air temperature, air velocity, mean radiant temperature, humidity, and direct solar flux, as well as the level of activity and thermal properties of clothing. The paper presents the velocity and temperature distribution, Predicted Mean Vote (PMV) and Predicted Percentage of Dissatisfied (PPD) indices for the driver and passengers.

Effects of relative humidity on comfort sensation by comparison between the young and the aged (여름철 냉방시 상대습도가 쾌적감에 미치는 영향(청년과 고령자의 비교를 중심으로))

  • 김동규;금종수;최광환;박희욱;김종열;주익성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.381-388
    • /
    • 1998
  • Hot and humid weather in summer generally brings about discomfort. Experiments on which relative humidity makes effects on the comfort sensation were performed to the young and the aged using sensation vote. From July to October 1996, seven college students and eleven aged people were exposed for 2 hours under six different conditions in the Pukyong National University test chamber so as to determine the effects of relative humidity on thermal and comfort sensations. Subjects were wearing same clothes, and the mean clo value was 0.5. The mean radiant temperature was equal to the air temperature and air velocity in the occupied zone around 0.lm/s. In the experiments, it was found that discomfort could be largely reduced when the humidity is controlled to low values in the settled high temperature.

  • PDF

The Effects of Illuminance and Correlated Color Temperature on Visual Comfort of Occupants' Behavior

  • Yoon, Gyu Hyon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The preferred illumination environment in accordance with the actions taken by the occupants of the rooms in residences differs significantly between different cultures and circumstances in and out of the country. In this regard, the purpose of this study is to evaluate the visual performance of various illumination environments in residential spaces by allowing the participants of the experiments to select the kind of illumination environment they prefer as the occupants of the room. For this purpose, we prepared a mock-up residential space of $6.2m{\times}4.5m{\times}2.5m$, where the experiments for this study were conducted. Then, three illuminance settings (30lx, 100lx, and 150lx) and three color temperature settings (2700k, 4000k, and 6500k) were selected as the properties of the physical environment where the tests were to be conducted. The survey was conducted with 30 study subjects, with whom the level of visual comfort and the lighting adjustment evaluation by different activities were carried out. The level of visual comfort in lighting in a residential context turned to be more influenced by the color temperature and illuminance compared to other factors. Except for the test item, 'comfort,' all test items showed positive reactions when the illuminance was 150lx, which was rather light. In 'comfort,' the test subjects appeared to prefer warm color temperature of 2700k. As we allowed the occupants to adjust the lighting environment in accordance with the conditions of the subjects and the activities they performed, the subjects regarded 150lx - 4000k setting as comfortable, while they preferred 150lx-5400k configuration for working. In case of resting, the subject answered that the configuration of 30lx -2700k setting to be visually comfortable.

An Approach of Indoor thermal Environment Control and Energy Saving Using the PMV Index (PMV지표를 이용한 공동주택의 난방제어에 따른 온열환경 및 에너지소비량 시뮬레이션)

  • Seong, Nam-Chul;Yoon, Dong-Won
    • Land and Housing Review
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2010
  • Thermal comfort provide satisfaction of thermal environment and affects productivity of occupants in residential building. However, temperature control can not provide the thermal comfort at all the time. because thermal comfort is influenced by many environmental variables such as temperature, relative humidity, air velocity, radiation temperature, activity level and clothing insulation. The purpose of this study is that predicted mean vote(PMV) index is used as control. And, Thermal comfort is evaluated both PMV control and temperature control by simulation. Each other cases were compared, in which set-point temperatures of $22^{\circ}C$ and $24^{\circ}C$ and, set-point PMV index through the respective heating season in the simulation. The results show that PMV control is better to maintain comfort state and save energy than temperature control.