• Title/Summary/Keyword: Temperature and salinity

Search Result 1,386, Processing Time 0.026 seconds

Effects of Salinity, Temperature and Food Type on the Uptake and Elimination Rates of Cd, Cr, and Zn in the Asiatic Clam Corbicula fluminea

  • Lee, Jung-Suk;Lee, Byeong-Gweon
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2005
  • Laboratory radiotracer experiments were conducted to determine assimilation efficiencies (AE) from ingested algal food and oxic sediment particles, uptake rates from the dissolved phase, and the efflux rates of Cd, Cr and Zn in the Asiatic clam Corbicula fluminea. Among three elements, AE from both algal and sediment food was greatest for Cd, followed by Zn and Cr. The AEs of tested elements from algal food (Phaeodactylum tricornutum) were consistently higher than those from sediments at a given salinity and temperature. The influence of salinity (0, 4 and 8 psu) and temperature (5, 13 and $21^{\circ}C$) on the metal AEs was not evident for most tested elements, except Cd AEs from sediment. The rate constant of metal uptake from the dissolved phase $(k_u)$ was greatest for Cd, followed by Zn and Cr in freshwater media. However, in saline water, the $(k_u)$ of Zn were greater than those of Cd. The influx rate of all tested metals increased with temperature. The efflux rate constant was greatest for Cr $(0.02\;d^{-1})$, followed by Zn $(0.010{\sim}0.017\;d^{-1})$ and $Cd\;(0.006\;d^{-1})$. The efflux rate constant for Zn in clam tissues depurated in 0 psu $(0.017\;d^{-1})$ was faster than that in 8 psu $(0.010\;d^{-1})$. Overall results showed that the variation of salinity and temperature in estuarine systems can considerably influence the metal bioaccumulation potential in the estuarine clam C. fluminea. The relatively high Cd accumulation capacity of C. fluminea characterized by the high AE, high dissolved influx rate and low efflux rate, suggested that this clam species can be used as an efficient biomonitor for the Cd contamination in freshwater and estuarine environments.

Effect of Temperature and Salinity on Production of Resting Egg in Korean Rotifer, Brachionus plicatilis (L and S-type)

  • Park, Heum-Gi;Hur, Sun-Bum
    • Journal of Aquaculture
    • /
    • v.9 no.4
    • /
    • pp.321-327
    • /
    • 1996
  • Production of resting egg from the Korean rotifer, Brachiunus plicatilis (L and S-type) was investigated at different temperatures (L-type : 20, 24, $28^{\circ}C$, S-type : 28 32, $36^{\circ}C$) and salinities (10, 20,30 ppt). The rotifer was cultured in 25 ml test tube and fed on Nannochloris oculata. With regard to mixis rate, L-type rotifer showed higher rate at lower temperature, and the highest rate was observed at 20 ppt of salinity at each temperature of the experiment. However, for S-type rotifer, the optimum temperature and salinity were $28\~32^{\circ}C$ and 20 ppt, respectively. The highest number of resting egg was 173 eggs/ml in 16 days at $24^{\circ}C$, 10 ppt for L-type rotifer and 410 eggs/ml in 14 days at $28^{\circ}C$, 10 ppt for S-type rotifer. The maximum number of resting egg produced per 10,000 rotifers was 8,122 eggs at $20^{\circ}C$, 20 ppt for L-type rotifer and 8,700 eggs at $28^{\circ}C$, 20 ppt for S-type rotifer. The maximum number of resting egg produced $10^8$ cells of N. oculata was 50.7 eggs for L-type rotifer ($24^{\circ}C$, 20 ppt) and 79.6 eggs for S-type rotifer ($32^{\circ}C$, 10 ppt). The number of resting egg produced per day was $1\~11$ eggs/ml for L-type rotifers and $21\~35$ eggs/ml for S-type rotifer in 9 combination experiments. In this study, S-type rotifer is better than L-type rotifer in resting egg production, and the optimum temperature and salinity for resting egg production were $20^{\circ}C$, 20 ppt for L-type rotifer and $28^{\circ}C$, 20 ppt for S-type rotifer. This result shows the difference of Korean rotifer in the optimum condition for resting egg production from other rotifers reported earlier.

  • PDF

Environmental Condition of Sea Areas for Anchovy Lift Net in Kamak Bay (가막만 멸치 들망 어장의 해역별 특성)

  • Lee, In-Weon;Kim, Dong-Soo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • In order to find out the environmental factors influencing the catch of anchovy lift nets in kamakbay, the three oceanographic factors, i. e., the water temperature, the salinity, the amount of chlorophyll-a were observed respectively from August 1 to 12, 1995 and from September 20 to 26, 1995, and each of them was compared with the catch of anchovy by the lift net. The results obtained are summerized as follow : 1) The water temperature was ranged from 17.3 to 29.6$^{\circ}C$ and its difference between the surface and bottom was 1 to 3$^{\circ}C$. In the three areas, A, B and C, the area A was the hightest in temperature, the area B being a second, and the area C being the lowest. 2) The salinity was ranged from 32.20 to 33.47$\textperthousand$ and its difference between the surface and bottom was not significant. In the three areas, the area A was the highest in salinity, the area B being a second, and the area C being the lowest. 3) The amount of chlorophyll-a was ranged from 0.19 to 5.30mg/m supper(3) and its difference among the three areas was not significant. Daily variation of the amount was very irregulated because the position operated was changed daily. 4) A comparison of the water temperature, the salinity and the amount of chlorophyll-a with the catch gave that the water temperature and the amount of chlorophyll-a had large influence on the catch and the salinity did not so. However, the influence of the amount of chlorophyll-a was larger than that of the water temperature. 5) The catch of anchovy was large respectively during two hours after sun set and during two hours before sun rise.

  • PDF

Relationship between Weather factors and Water Temperatures, Salinities in the West Sea of Korea (한국 서해에서 기상인자와 수온, 염분과의 관계)

  • Lee Jong Hee;Kim Dong Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.181-185
    • /
    • 2003
  • the effect if atmosphere is more important in the West sea of Korea than in other seas because of shallow water and heat storage if the water. The serial oceanographic observation data and coastal station data from NFRID, and the atmosphere data from KMA were used in order to find out the relationship between them The highest water temperature, salinity and weather factor were recorded in Aug, and the lowest of them in Feb. As the water deepens, the maximum time leg in water temperature and the minimum time leg in salinity. Water temperature have the maximum in Oct, the minimum in Apr at 75m of the 311-07 station with 100m depth water temperature (WT)-air temperature, WT-precipitation (Preci.) and salinity (Sal)-wind speed (WS) were in direct proportion, but WT-WS, Sal-AT and Sal-Preci in inverse proportion Water temperature and salinity I-ave time leg at the same depth the maximum had more the delay of $2\~4$ months at a depth if 20 meters than at the surface in all stations except for salinity at 307-05.

  • PDF

Effects of Water Temperature and Salinity on Blood Properties and Oxygen Consumption in Hagfish (Eptatretus burgeri) (먹장어(Eptatretus burgeri)의 혈액성상과 산소소비에 미치는 수온 및 염분의 영향)

  • Do, Yong-Hyun;Min, Byung-Hwa;Myeong, Jeong-In;Jee, Young-Ju;Chang, Young-Jin
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.1
    • /
    • pp.214-222
    • /
    • 2014
  • Hagfish Eptatretus burgeri is classified as a agnathans and has many different physiological properties compared with vertebrates. In this study, we examined effects of water temperature and salinity on blood properties and oxygen consumption in hagfish. In the experiment of water temperature change, hematocrit (Ht), red blood cell (RBC) and glucose of hagfish blood revealed the lowest values at $15^{\circ}C$. Oxygen consumption of hagfish had significantly increased with rising water temperature, and the increasing rate was twice as much when the temperature was manipulated every $5^{\circ}C$. Also, oxygen consumption during the night time (a short photoperiod) was significantly higher than that of the daytime. Q10 level was 3.50 in the light period and 3.92 in the dark period. No significant change in plasma glucose level was showned in changing salinity from 30 psu to 22 psu, while it had rapidly increased at 20 psu ($13.7{\pm}4.0mg/dL$) and thereafter all hagfish were dead at 18 psu. However, osmolarity, $Na^+$, $K^+$ and $Cl^-$ levels had significantly decreased when salinity decreased. This results are expected to develop the artificial rearing techniques of natural hagfish.

Effect of Salinity Concentration on Aerobic Composting of Food Waste (염분함량이 음식물쓰레기의 호기성 퇴비화에 미치는 영향)

  • Kim, Nam-Chan;Kim, Do-Hee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2000
  • The purpose of this study is to estimate the degradation rate and process efficiency of the composting according to the salinity concentration. The samples of food waste for this study were collected in Pocheon-Gun, Kyungki-Do. The collected samples were adjusted to the optimum range of moisture content, pH and C/N ratio. After that, adding the saline, the samples with 3 different salinity concentrations(1%, 5% and 10%) were made. Then each sample was fed into the reactor with temperature controller. During the aerobic composting process, the change of the physical and chemical properties of the sample as temperature, pH, C/N ratio and $CO_2$ and $O_2$ concentration in the reactor were measured. From the experiment of this study, the result are following. The highest temperatures are $59^{\circ}C$ at RUN 1(1% salinity conc.), $49^{\circ}C$ at RUN 2(5% salinity conc.) and $45^{\circ}C$ at RUN 3(10% salinity conc.). The change of $CO_2$ production and $O_2$ consumption have the positive correlation with the change of the temperature. $CO_2$ production and $O_2$ consumption are peaked at the low salinity concentration. During composting, Run 1, RUN 2 and RUN 3 are increased pH to 8.9, 8.6 and 7.2 and slowly decreased C/N ratio to 18.9, 19.1 and 22.1 and moisture content to 51.1%, 53.7% and 55.0%, respectively. It is supposed that increasing salinity concentration causes the retarding of the microbial degradation activities during the composting. And for the efficient composting, the salinity concentration in the sample hat to be maintained below 5%.

  • PDF

Effects of Temperature, Salinity, and Silt and Clay on the Rate of Photosynthesis of laver, Porphyra yezoensis (양식김의 광합성에 미치는 수온, 염분 및 부이의 영향)

  • CHANG Sun-duck;CHIN Pyung;PARK Kie-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.335-340
    • /
    • 1983
  • The effects of water temperature, salinity, and silt and clay on the photosynthetic activity of Porphyra yezoensis were measured. The rate of photosynthesis of P. yezoensis increases as the water temperature rises in the range of $8{\sim}16^{\circ}C$ and begin to decrease at $18^{\circ}C$. In the salinity range of $21.5{\sim}33.5\%0$, the rate of photosythesis of P. yezoensis was increased in the sea water of $29.5\%0$ salinity and decreased in $21.5\%0$ salinity. The rates of photosynthesis of P. yezoensis were significantly decreased with increase of the concentration of silt and clay and the time of exposure to suspended silt and clay. Of the combined effects of salinity, and silt and clay on the photosynthetic activity of P. yezoensis, the effects of silt and clay were higher in the low salinity of $21.5\%0$ and $33.5\%0$. The wet weight of P. yezoensis showed a remarkable loss with increase of the concentration of silt and clay and the time of exposure to silt and clay.

  • PDF

Observed and Simulated Seasonal Salinity in The Tropical Atlantic ocean, and its Relationship with Freshwater (관측과 모델에서 얻어진 열대 대서양에서의 계절별 염분 분포 및 담수 효과)

  • YOO, JUNG-MOON
    • 한국해양학회지
    • /
    • v.27 no.4
    • /
    • pp.290-302
    • /
    • 1992
  • Seasonal variations of salinity in the upper 500 m of the tropical Atlantic Ocean are examined, based on both climatological seasonal salinity observations and numerical simulations with hydrological forcing. The seasonal cycle of sea surface salinity has strong seasonal variations caused by shifts of the freshwater surplus zone (i.e. the intertropical convergence zone) and the river outflow. The climatological seasonal salinity in this analysis concurs with other independent observations described by Default (1981) and Levitus (1982), but provides more consistent patterns with temperature structure. The effect of salinity on density below 100 m depth in the tropical Atlantic is negligible compared to tat of temperature, which in the mixed layer salinity affects density significantly. The systematic difference between observed and simulated salinity is found to be the fact that the simulated salinity is higher in the subtropics than the observed salinity, and possible sources about the difference are also discussed.

  • PDF

Diffusion Analysis of the High Temperature and Salinity Water by the 3-D Baroclinic Flow Model (3-D 밀도류모델을 이용한 고온${\cdot}$고염수의 확산해석)

  • Kim, Jong-In;Kim, Hyeon-Ju
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.3-13
    • /
    • 1999
  • The diffusion characteristics of the high temperature and salinity water discharged in Chinhae Bay under BMP(Barge-Mounted Plants) desalination processes were simulated to access environmental impact. The 3-D baroclinic flow model is formulated by integrating the basic equations with respect to each control volume and by transforming them into a finite difference form using the space-staggered grid system. With a 3-D baroclinic flow model, the tide-induced and density-induced current was computed and confirmed by comparing with observed data. From the results of numerical experiment, it is expected that the maximum diffusion lengths of the high temperature and salinity which increase $0.6^{circ}C$ and 0.2 after discharging are 1 km and 3.5km, respectively. It may be expected that the discharge has an effect on surrounding area of discharge, but not an effect on whole area of Chinhae Bay.

  • PDF

Analysis of haline channel formed in the East China Sea and the Atlantic Ocean using the T-S gradient diagram

  • Kim, Juho;Kim, Hansoo;Paeng, Dong-Guk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.208-216
    • /
    • 2014
  • In case of any coastal ocean near the mouth of huge rivers, low salinity water can be formed due to its large amount of freshwater discharge. For the acoustic analysis on the low salinity environment, some oceanographic data of the East China Sea and the Atlantic Ocean were collected through KODC (Korea Oceanographic Data Center) and NODC (National Oceanographic Data Center) online service. In this paper, the T-S gradient diagram is introduced to show a relation between the gradients of temperature and salinity in view of acoustic surface channel formation. Existence of haline channel, quantitative contribution of gradients of salinity and temperature, effectiveness of the channel formation can be known by the T-S gradient diagram. After applying the collected data into the diagram, tropical regions of the Atlantic Ocean show strong haline channel due to its nearly invariant temperature and drastic change of salinity with depth. The averaged transmission loss in the channel is about 5.7 ~ 7.5 dB less than that out of the channel by the results of acoustic propagation model (RAM: Range independent Acoustic Model). On the other hand, the East China Sea and temperate region of the Atlantic ocean have weaker haline channel with less difference of the averaged transmission loss between in and out of the channel as 3.2 ~ 6.0 dB. Although data samples used in this study have limitation to represent the general physical structures of the three ocean regions, the T-S gradient diagram is shown to be useful and acoustic field affected by low salinity environment is investigated in this study.