• 제목/요약/키워드: Temperature Controlled Algorithm

검색결과 74건 처리시간 0.026초

저온저장고의 뉴로-퍼지 제어시스템 개발 (Development of Neuro-Fuzzy System for Cold Storage Facility)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.

해상 가두리 양식장 암모니아 모니터링 시스템 개발 (Development of the Monitoring System for Ocean Fish Farm)

  • 오진석;조관준;곽준호;진선호;이종호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.273-274
    • /
    • 2006
  • The sea is origin of all lift, and 90% of the all living organisms are in the sea. The biosynthesis is very different. Many organisms are kept on a lower or developed to another evolutionary level than on shore. Our society is increasing demand and need for marine food and this food has to product at onshore or offshore fish farming sites. Ocean fish farms have a special operation properties such as a good quality water, net cage, sheltered locations and feeding system. The farming site is controlled and monitored for fish welfare as ammonia($NH_3$), temperature, the speed of a running fluid. Specially, the fish farm is seriously influenced by ammonia. In this paper, $NH_3$ monitoring system for ocean fish farm is researched for the suitable fish farming sites, and test equipment is designed for achieving practical data. The equipment wit monitoring algorithm is expected to the useful system for ocean fish farm.

  • PDF

Design an Automatic System to Control and Monitor the Process of Straw Mushrooms Indoors Cultivation

  • Quoc Cuong Nguyen;Quoc Huy Nguyen;Jaesang Cha
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.59-67
    • /
    • 2024
  • Current straw mushroom farming in countries with large rice growing areas has great development potential, and was once considered a way to generate additional income and reduce poverty in rural areas. However, currently most people still grow mushrooms using traditional processes, leading to low productivity and unguaranteed output quality. Currently, due to climate change and unusual weather changes, people tend to switch to growing straw mushrooms indoors. In the process of growing straw mushrooms indoors, the design of an automatic control and monitoring system is very important to ensure the growing process is carried out effectively and achieves high yields. In this paper, we propose a system that can automatically control and monitor the humidity and temperature of the indoor straw mushroom growing process and other parameters that can be monitored through a network system using Internet of Things. The control algorithm automatically adjusts the grow house equipment based on feedback from sensors to maintain an optimal environment for growing straw mushrooms. Experimental results show that the straw mushroom growing system with automatically controlled and monitored environmental parameters helps improve efficiency, reduce costs and increase the sustainability of the current straw mushroom growing industry.

SYNOP 지상관측자료를 활용한 수치모델 전구 예측성 검증 (Verification of the Global Numerical Weather Prediction Using SYNOP Surface Observation Data)

  • 이은희;최인진;김기병;강전호;이주원;이은정;설경희
    • 대기
    • /
    • 제27권2호
    • /
    • pp.235-249
    • /
    • 2017
  • This paper describes methodology verifying near-surface predictability of numerical weather prediction models against the surface synoptic weather station network (SYNOP) observation. As verification variables, temperature, wind, humidity-related variables, total cloud cover, and surface pressure are included in this tool. Quality controlled SYNOP observation through the pre-processing for data assimilation is used. To consider the difference of topographic height between observation and model grid points, vertical inter/extrapolation is applied for temperature, humidity, and surface pressure verification. This verification algorithm is applied for verifying medium-range forecasts by a global forecasting model developed by Korea Institute of Atmospheric Prediction Systems to measure the near-surface predictability of the model and to evaluate the capability of the developed verification tool. It is found that the verification of near-surface prediction against SYNOP observation shows consistency with verification of upper atmosphere against global radiosonde observation, suggesting reliability of those data and demonstrating importance of verification against in-situ measurement as well. Although verifying modeled total cloud cover with observation might have limitation due to the different definition between the model and observation, it is also capable to diagnose the relative bias of model predictability such as a regional reliability and diurnal evolution of the bias.

상온 상압의 이산화탄소 저장용 탱크를 위한 예냉과정의 비선형 모델링 및 비례-적분 제어 적용 (Nonlinear Modeling and Application of PI Control on Pre-cooling Session of a Carbon Dioxide Storage Tank at Normal Temperature and Pressure)

  • 임유경;이석구;단승규;고민수;이종민
    • Korean Chemical Engineering Research
    • /
    • 제52권5호
    • /
    • pp.574-580
    • /
    • 2014
  • 이산화탄소($CO_2$) 포집 및 지중저장을 위한 $CO_2$ 수송선용 저장탱크는 액체 $CO_2$와 직접적으로 접촉할 경우 발생할 수 있는 물리적/열적 탱크 손상을 방지하기 위해 화물 선적 단계 이전에 예냉과정을 거쳐야 한다. 본 연구에서는 예냉을 위해 주입되는 저온 $CO_2$ 기체의 탱크 유입량을 계산하기 위해 $CO_2$ 저장탱크 예냉과정의 수학적 모델 식을 제안하였다. 또한 비례-적분(proportional-integral: PI) 제어를 통해 공정을 제어하는 동적 모사 결과를 제시하였다. 이 때 제어 변수를 탱크 내 온도 또는 압력으로 선정한 두 가지 사례를 모사하였으며 그러한 결정이 $CO_2$ 저장탱크의 예냉과정에 미치는 영향을 해석하였다. 결과적으로 예냉과정의 PI제어에는 탱크 내 온도를 제어하는 것보다 압력을 제어하는 우회적인 방식을 택할 때 수학적 모델의 비선형성과 특이점 발생으로 인한 불안정성을 피할 수 있으므로 더 안정된 결과가 도출됨을 보였다.

스마트기기를 이용한 주기별 식물 생장 인식 자동 제어 모니터링 시스템 (Cycle-by-Cycle Plant Growth Automatic Control Monitoring System using Smart Device)

  • 김경옥;김응곤
    • 한국전자통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.745-750
    • /
    • 2013
  • 최근 수행된 많은 연구에서 시설 하우스나 식물 공장과 같이 실용적인 원예 시설에 대한 환경 제어 시스템이 다양하게 제시되었다. 그러나 아직까지도 식물의 전 생장 과정에 따른 온 습도 등 제어가 제대로 되지 않아 성장 장해 및 병충해에 노출되어 농가의 적지 않은 피해가 보고되고 있다. 공기 순환팬, 산업용 제습기 등을 활용하여 대책을 마련해 보고 있지만, 기대에 미치지 못하고 있다. 본 논문에서는 주기별 생장 인식 알고리즘을 이용하여 각 식물의 성장 단계를 인식하고 식물의 성장 단계에 따른 최적의 환경을 제공한다. 주기별 식물 생장 인식 자동 제어 모니터링 시스템을 이용하면 식물의 생장에 필요한 최적 환경을 제공하므로 생산성을 높일 수 있다.

이방성 전도 필름을 이용한 플립칩 패키지의 열피로 수명 예측 및 강건 설계 (Robust Design and Thermal Fatigue Life Prediction of Anisotropic Conductive Film Flip Chip Package)

  • 남현욱
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1408-1414
    • /
    • 2004
  • The use of flip-chip technology has many advantages over other approaches for high-density electronic packaging. ACF (anisotropic conductive film) is one of the major flip-chip technologies, which has short chip-to-chip interconnection length, high productivity, and miniaturization of package. In this study, thermal fatigue lift of ACF bonding flip-chip package has been predicted. Elastic and thermal properties of ACF were measured by using DMA and TMA. Temperature dependent nonlinear hi-thermal analysis was conducted and the result was compared with Moire interferometer experiment. Calculated displacement field was well matched with experimental result. Thermal fatigue analysis was also conducted. The maximum shear strain occurs at the outmost located bump. Shear stress-strain curve was obtained to calculate fatigue life. Fatigue model for electronic adhesives was used to predict thermal fatigue life of ACF bonding flip-chip packaging. DOE (Design of Experiment) technique was used to find important design factors. The results show that PCB CTE (Coefficient of Thermal Expansion) and elastic modulus of ACF material are important material parameters. And as important design parameters, chip width, bump pitch and bump width were chose. 2$^{nd}$ DOE was conducted to obtain RSM equation far the choose 3 design parameter. The coefficient of determination ($R^2$) for the calculated RSM equation is 0.99934. Optimum design is conducted using the RSM equation. MMFD (Modified Method for feasible Direction) algorithm is used to optimum design. The optimum value for chip width, bump pitch and bump width were 7.87mm, 430$\mu$m, and 78$\mu$m, respectively. Approximately, 1400 cycles have been expected under optimum conditions. Reliability analysis was conducted to find out guideline for control range of design parameter. Sigma value was calculated with changing standard deviation of design variable. To acquire 6 sigma level thermal fatigue reliability, the Std. Deviation of design parameter should be controlled within 3% of average value.

Correlations between the Growth Period and Fresh Weight of Seed Sprouts and Pixel Counts of Leaf Area

  • Son, Daesik;Park, Soo Hyun;Chung, Soo;Jeong, Eun Seong;Park, Seongmin;Yang, Myongkyoon;Hwang, Hyun-Seung;Cho, Seong In
    • Journal of Biosystems Engineering
    • /
    • 제39권4호
    • /
    • pp.318-323
    • /
    • 2014
  • Purpose: This study was carried out to predict the growth period and fresh weight of sprouts grown in a cultivator designed to grow sprouts under optimal conditions. Methods: The temperature, light intensity, and amount of irrigation were controlled, and images of seed sprouts were acquired to predict the days of growth and weight from pixel counts of leaf area. Broccoli, clover, and radish sprouts were selected, and each sprout was cultivated in a 90-mm-diameter Petri dish under the same cultivating conditions. An image of each sprout was taken every 24 hours from the 4th day, and the whole cultivating period was 6 days, including 3 days in the dark. Images were processed by histogram inspection, binary images, image erosion, image dilation, and the overlay image process. The RGB range and ratio of leaves were adjusted to calculate the pixel counts for leaf area. Results: The correlation coefficients between the pixel count of leaf area and the growth period of sprouts were 0.91, 0.98, and 0.97 for broccoli, clover, and radish, respectively. Further, the correlation coefficients between the pixel count of leaf area and fresh weight were 0.90 for broccoli, 0.87 for clover, and 0.95 for radish. Conclusions: On the basis of these results, we suggest that the simple image acquisition system and processing algorithm can feasibly estimate the growth period and fresh weight of seed sprouts.

適應制御裝置에 關한 硏究 (A Study of the Adaptive Control System)

  • 하주식;최경삼;김승호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.19-31
    • /
    • 1979
  • Recently the adaptive control system, which keeps the control system always optimal by adjusting the control parameters automatically according to the variations of the plant parameters, have become very important in the field of control engineering. The adaptive control systems are usally composed of the plant identification, the decision of the optimal control parameters, and the adjustment of the control parameters. This paper deals with a method of the adaptive control system when PI or PID controller is used in the feed back control system. Its controlled object (the plant) is assumed to be described by the transfer function of $\frac{ke^{-LS}}{1+TS}$ where k, T and L are steady state gain, time constant and pure dead time respectively, and their values are variable in accordance with the change of environmental circumstance. It has been known that a pseudo-random binary signal is quite effective for the measurement of an impulse response of a plant. In adaptive control systems, however, the impulse response itself is not appropriate to determine the control parameters. In this paper, the authors propose a method to estimate directly the parameters of the plant k, T and L by means of the correlation technique using 3 level M-sequence signal as a test signal. The authors also propose a method to determine the optimal parameters of the PI or PID controller in the sense of minimizing the square integral of the control error in the feed back control system, and the values of the optimal parameters are computed numerically for various values of T and L, and the results are examined and compared with those of the conventional methods. Finally the above-mentioned two methods are combined and an algorithm to struct an adaptive control system is suggested. The experiments for the indicial responses by means of both the model of the temperature control system using SCR actuater and the analog simulations have shown good results as expected, and the effectiveness of the proposed method is verified. The M-sequence generator and the time delay circuit, which are manufactured for the experiments, are operated in quite a good condition.

  • PDF

계량설비용 디지탈 출력 로드셀의 개발에 관한 연구 (A Study on the Development of Digital Output Load Cell)

  • 박찬원;안광희
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제11권1호
    • /
    • pp.114-122
    • /
    • 1997
  • 본 연구에서는 계량 설비에 사용되는 스마트형 디지털 로드셀을 개발하였다. 로드셀 센서는 중량의 변화에 대해 매우 민감하여햐 하므로 정밀한 A/D변환을 위하여 온도 안정성, 낮은 드리프트 특성 그리고 분해능이 우수하여야 한다. 단일칩 마이크로프로세서에 의해 제어되는 고안된 아날로그 회로로써 OP엠프 오프셋과 드리프트 특성을 저감시키며 소프트웨어 알고리즘에 의해 안정되고 정밀한 A/D 변환이 가능하도록 디지털 로드셀을 설계하였다. 또한 RS-485통신 방식으로 로드셀을 제어하고 보정용 데이터와 제어 데이터를 기억시키는 기능들도 포함하였다. 시뮬레이션과 실측 평가를 통하여 개발된 로드셀의 우수성을 입증하였으며, 본 연구의 결과는 원격계량 센서로서 계량 설비 분야에 유용한 활용이 기대된다.

  • PDF