• Title/Summary/Keyword: Temperature Accuracy

Search Result 1,772, Processing Time 0.035 seconds

Temperature Compensation of NDIR $CO_{2}$ Gas Sensor Implemented with ASIC Chip (ASIC 칩 내장형 비분산 적외선 이산화탄소 가스센서의 온도보상)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.40-45
    • /
    • 2007
  • This paper describes NDIR $CO_{2}$ gas sensor that shows the characteristics of temperature compensation. It consists of novel optical cavity that has two elliptical mirrors and a thermopile that includes ASIC chip in the same metal package for the amplification of detector output voltage and temperature sensor. The newly developed sensor module shows high accuracy ($less\;than {\pm}40\;ppm$) throughout the measuring concentration of $CO_{2}$ gas from 0 ppm to 2,000 ppm. After implementing the calculation methods of gas concentration, which is based upon the experimental results, the sensor module shows high accuracy less than ${\pm}5\;ppm$ error throughout the measuring temperature range ($15^{\circ}C\;to\;35$^{\circ}C$) and gas concentrations with self-temperature compensation.

  • PDF

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process (복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석)

  • Jee, Joon-Bum;Min, Jae-Sik;Jang, Min;Kim, Bu-Yo;Zo, Il-Sung;Lee, Kyu-Tae
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.385-398
    • /
    • 2017
  • Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Development of a Microwave Radiometer for Remote Sensing of Water Surface Temperature (수면 온도 원격탐사용 마이크로파 라디오미터의 개발)

  • Son, Hong-Min;Youn, Jeong-Beam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.9
    • /
    • pp.1107-1115
    • /
    • 2012
  • This paper presents the development processes of a microwave radiometer for remote sensing of water surface temperature. Achieving the measurement accuracy within $2^{\circ}C$ for water surface temperature of $5{\sim}30^{\circ}C$, the requirements and specifications of the microwave radiometer and its receiver are drawn. The receiver with high gain, high sensitivity is designed and implemented. The receiver has the bandwidth of 50 MHz, the system gain of 45.2 dB and the sensitivity of 0.56K at 5.02 GHz. The effectiveness of the developed microwave radiometer in the measurement of water surface temperature is demonstrated experimentally. The results show the microwave radiometer can detect water surface temperature for $7.5{\sim}18^{\circ}C$ within the accuracy of $0.45^{\circ}C$.

The impact of land use and land cover changes on land surface temperature in the Yangon Urban Area, Myanmar

  • Yee, Khin Mar;Ahn, Hoyong;Shin, Dongyoon;Choi, Chuluong
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • Yangon Mega City is densely populated and most urbanization area of Myanmar. Rapid urbanization is the main causes of Land Use and Land Cover (LULC) change and they impact on Land Surface Temperature (LST). The objectives of this study were to investigate on the LST with respect to LULC of Yangon Mega City. For this research, Landsat satellite images of 1996, 2006 and 2014 of Yangon Area were used. Supervised classification with the region of interest and calculated change detection. Ground check points used 348 points for accuracy assessment. The overall accuracy indicated 89.94 percent. The result of this paper, the vegetation area decreased from $1061.08sq\;km^2$ (24.5%) in 1996 to $483.53sq\;km^2$ (11.2%) in 2014 and built up area clearly increased from $485.33sq\;km^2$ (11.2%) in 1996 to $1435.72sq\;km^2$ (33.1%) in 2014. Although the land surface temperature was higher in built up area and bare land, lower value in cultivated land, vegetation and water area. The results of the image processing pointed out that land surface temperature increased from $23^{\circ}C$, $26^{\circ}C$ and $27^{\circ}C$ to $36^{\circ}C$, $42^{\circ}C$ and $43.3^{\circ}C$ for three periods. The findings of this paper revealed a notable changes of land use and land cover and land surface temperature for the future heat management of sustainable urban planning for Yangon Mega city. The relationship of regression experienced between LULC and LST can be found gradually stronger from 0.8323 in 1996, 0.8929 in 2006 and 0.9424 in 2014 respectively.

Performance tests on the ANN model prediction accuracy for cooling load of buildings during the setback period (셋백기간 중 건물 냉방시스템 부하 예측을 위한 인공신경망모델 성능 평가)

  • Park, Bo Rang;Choi, Eunji;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.83-88
    • /
    • 2017
  • Purpose: The objective of this study is to develop a predictive model for calculating the amount of cooling load for the different setback temperatures during the setback period. An artificial neural network (ANN) is applied as a predictive model. The predictive model is designed to be employed in the control algorithm, in which the amount of cooling load for the different setback temperature is compared and works as a determinant for finding the most energy-efficient optimal setback temperature. Method: Three major steps were conducted for proposing the ANN-based predictive model - i) initial model development, ii) model optimization, and iii) performance evaluation. Result:The proposed model proved its prediction accuracy with the lower coefficient of variation of the root mean square errors (CVRMSEs) of the simulated results (Mi) and the predicted results (Si) under generally accepted levels. In conclusion, the ANN model presented its applicability to the thermal control algorithm for setting up the most energy-efficient setback temperature.

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data (토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구)

  • Hae-Dong Kim;Ha-Young Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

The Accuracy of Satellite-composite GHRSST and Model-reanalysis Sea Surface Temperature Data at the Seas Adjacent to the Korean Peninsula (한반도 연안 위성합성 및 수치모델 재분석 해수면온도 자료의 정확도)

  • Baek, You-Hyun;Moon, Il-Ju
    • Ocean and Polar Research
    • /
    • v.41 no.4
    • /
    • pp.213-232
    • /
    • 2019
  • This study evaluates the accuracy of four satellite-composite (OSTIA, AVHRR, G1SST, FNMONC-S) and three model-reanalysis (HYCOM, JCOPE2, FNMOC-M) daily sea surface temperature (SST) data around the Korean Peninsula (KP) using ocean buoy data from 2011-2016. The results reveal that OSTIA has the lowest root mean square error (RMSE; 0.68℃) and FNMOC-S/M has the highest correction coefficients (r = 0.993) compared with observations, while G1SST, JCOPE2, and AVHRR have relatively larger RMSEs and smaller correlations. The large RMSEs were found in the western coastal regions of the KP where water depth is shallow and tides are strong, such as Chilbaldo and Deokjeokdo, while low RMSEs were found in the East Sea and open oceans where water depth is relatively deep such as Donghae, Ulleungdo, and Marado. We found that the main sources of the large RMSEs, sometimes reaching up to 5℃, in SST data around the KP, can be attributed to rapid SST changes during events of strong tidal mixing, upwelling, and typhoon-induced mixing. The errors in the background SST fields which are used in data assimilations and satellite composites and the missing in-situ observations are also potential sources of large SST errors. These results suggest that both satellite and reanalysis SST data, which are believed to be true observation-based data, sometimes, can have significant inherent errors in specific regions around the KP and thus the use of such SST products should proceed with caution particularly when the aforementioned events occur.

Effect of the Epoxy Mold on the Thermal Dissipation Behavior of LED Package (LED 패키지에서 에폭시 몰드가 방열특성에 미치는 영향)

  • Bang, Young-Tae;Moon, Cheol-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.1-7
    • /
    • 2012
  • LED package with 4[mm]-height mold was manufactured and the surface temperature was measured directly using both thermocouple and thermal infrared (IR) camera. FVM simulation was conducted to estimate the surface temperature of the same LED package under the same condition, by which the accuracy of the simulation was secured. Then, the effects of the height and thermal conductivity of the mold on the junction temperature of the LED package were investigated by FVM simulation. The results showed that the junction temperature decreased by 10[$^{\circ}C$] when the mold height was 3~5[mm], but the thermal conductivity of the mold didn't affect the junction temperature significantly.

A Study on the Comparison of Measurement and Prediction of Underground Temperature in Gumi. (구미지역 지중온도의 실측과 예측에 관한 비교 연구)

  • Jeong sooill
    • Journal of the Korean housing association
    • /
    • v.15 no.4
    • /
    • pp.99-105
    • /
    • 2004
  • Korea gets most of its housing energy from fossil fuel which can be mined only for 30 years. So the development of an alternative energy is very important. Solar and underground thermal energy are two of these alternatives but little study has been conducted on these. For use of underground energy, we need accurate data regarding underground temperature, but there are only 30 measuring points for underground temperature in the entire country. We need to have a method of predicting underground temperature precisely. In this study the underground temperature is measured at under 3m in Gumi, and these data are compared with predicted data for checking the accuracy of the predicting method.