• Title/Summary/Keyword: Teeth segmentation

Search Result 21, Processing Time 0.021 seconds

Improving Accuracy of Instance Segmentation of Teeth

  • Jongjin Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.280-286
    • /
    • 2024
  • In this paper, layered UNet with warmup and dropout tricks was used to segment teeth instantly by using data labeled for each individual tooth and increase performance of the result. The layered UNet proposed before showed very good performance in tooth segmentation without distinguishing tooth number. To do instance segmentation of teeth, we labeled teeth CBCT data according to tooth numbering system which is devised by FDI World Dental Federation notation. Colors for labeled teeth are like AI-Hub teeth dataset. Simulation results show that layered UNet does also segment very well for each tooth distinguishing tooth number by color. Layered UNet model using warmup trick was the best with IoU values of 0.80 and 0.77 for training, validation data. To increase the performance of instance segmentation of teeth, we need more labeled data later. The results of this paper can be used to develop medical software that requires tooth recognition, such as orthodontic treatment, wisdom tooth extraction, and implant surgery.

Image Segmentation of Teeth Region by Color Image Analysis (컬러 영상 분할 기법을 활용한 치아 영역 자동 검출)

  • Lee, Seong-Taek;Kim, Kyeong-Seop;Yoon, Tae-Ho;Kim, Kee-Deog;Park, Won-Se
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1207-1214
    • /
    • 2009
  • In this study, we propose a novel color-image segmentation algorithm to discern the teeth region utilizing RG intensity and its relevant RGB histogram features with resolving the variations of its maximum intensity in terms of peaks and valleys. Tooth candidates in a CCD image are first extracted by applying RGB color multi-threshold levels and consequently the successive morphological image operations and a Sobel-mask edge processing are performed to resolve the teeth region and its contour.

Visualization of Tooth for Non-Destructive Evaluation from CT Images

  • Gao, Hui;Chae, Oksam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.207-213
    • /
    • 2009
  • This paper reports an effort to develop 3D tooth visualization system from CT sequence images as a part of the non-destructive evaluation suitable for the simulation of endodontics, orthodontics and other dental treatments. We focus on the segmentation and visualization for the individual tooth. In dental CT images teeth are touching the adjacent teeth or surrounded by the alveolar bones with similar intensity. We propose an improved level set method with shape prior to separate a tooth from other teeth as well as the alveolar bones. Reconstructed 3D model of individual tooth based on the segmentation results indicates that our technique is a very conducive tool for tooth visualization, evaluation and diagnosis. Some comparative visualization results validate the non-destructive function of our method.

3D Reconstruction System of Teeth for Dental Simulation (치과 진료 시뮬레이션을 위한 3차원 치아의 재구성 시스템)

  • Heo, Hoon;Choi, Won-Jun;Chae, Ok-Sam
    • The KIPS Transactions:PartB
    • /
    • v.11B no.2
    • /
    • pp.133-140
    • /
    • 2004
  • Recently, the dental information systems were rapidly developed in order to store and process the data of patients. But, these systems should serve a doctor a good quality information against disease for diagnostic and surgery purpose so as to success in this field. This function of the system it important to persuade patients to undergo proper surgical operation they needed. Hence, 3D teeth model capable of simulating the dental surgery and treatment is necessary Teeth manipulation of dentistry is performed on individual tooth in dental clinic. io, 3D teeth reconstruction system should have the techniques of segmentation and 3D reconstruction adequate for individual tooth. In this paper, we propose the techniques of adaptive optimal segmentation to segment the individual area of tooth, and reconstruction method of tooth based on contour-based method. Each tooth can be segmented from neighboring teeth and alveolar bone in CT images using adaptive optimal threshold computed differently on tooth. Reconstruction of individual tooth using results of segmentation can be manipulated according to user's input and make the simulation of dental surgery and treatment possible.

A Study of Segmentation for 3D Visualization In Dental Computed Tomography image (치과용 CT영상의 3차원 Visualization을 위한 Segmentation에 관한 연구)

  • 민상기;채옥삼
    • Proceedings of the IEEK Conference
    • /
    • 2000.11c
    • /
    • pp.177-180
    • /
    • 2000
  • CT images are sequential images that provide medical doctors helpful information for treatment and surgical operation. It is also widely used for the 3D reconstruction of human bone and organs. In the 3D reconstruction, the quality of the reconstructed 3D model heavily depends on the segmentation results. In this paper, we propose an algorithm suitable for the segmentation of teeth and the maxilofacial bone.

  • PDF

Improved Tooth Detection Method for using Morphological Characteristic (형태학적 특징을 이용한 향상된 치아 검출 방법)

  • Na, Sung Dae;Lee, Gihyoun;Lee, Jyung Hyun;Kim, Myoung Nam
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1171-1181
    • /
    • 2014
  • In this paper, we propose improved methods which are image conversion and extraction method of watershed seed using morphological characteristic of teeth on complement image. Conventional tooth segmentation methods are occurred low detection ratio at molar region and over, overlap segmentation owing to specular reflection and morphological feature of molars. Therefore, in order to solve the problems of the conventional methods, we propose the image conversion method and improved extraction method of watershed seed. First, the image conversion method is performed using RGB, HSI space of tooth image for to extract boundary and seed of watershed efficiently. Second, watershed seed is reconstructed using morphological characteristic of teeth. Last, individual tooth segmentation is performed using proposed seed of watershed by watershed algorithm. Therefore, as a result of comparison with marker controlled watershed algorithm and the proposed method, we confirmed higher detection ratio and accuracy than marker controlled watershed algorithm.

SEGMENTATION AND EXTRACTION OF TEETH FROM 3D CT IMAGES

  • Aizawa, Mitsuhiro;Sasaki, Keita;Kobayashi, Norio;Yama, Mitsuru;Kakizawa, Takashi;Nishikawa, Keiichi;Sano, Tsukasa;Murakami, Shinichi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.562-565
    • /
    • 2009
  • This paper describes an automatic 3-dimensional (3D) segmentation method for 3D CT (Computed Tomography) images using region growing (RG) and edge detection techniques. Specifically, an augmented RG method in which the contours of regions are extracted by a 3D digital edge detection filter is presented. The feature of this method is the capability of preventing the leakage of regions which is a defect of conventional RG method. Experimental results applied to the extraction of teeth from 3D CT data of jaw bones show that teeth are correctly extracted by the proposed method.

  • PDF

Convolutional neural networks for automated tooth numbering on panoramic radiographs: A scoping review

  • Ramadhan Hardani Putra;Eha Renwi Astuti;Aga Satria Nurrachman;Dina Karimah Putri;Ahmad Badruddin Ghazali;Tjio Andrinanti Pradini;Dhinda Tiara Prabaningtyas
    • Imaging Science in Dentistry
    • /
    • v.53 no.4
    • /
    • pp.271-281
    • /
    • 2023
  • Purpose: The objective of this scoping review was to investigate the applicability and performance of various convolutional neural network (CNN) models in tooth numbering on panoramic radiographs, achieved through classification, detection, and segmentation tasks. Materials and Methods: An online search was performed of the PubMed, Science Direct, and Scopus databases. Based on the selection process, 12 studies were included in this review. Results: Eleven studies utilized a CNN model for detection tasks, 5 for classification tasks, and 3 for segmentation tasks in the context of tooth numbering on panoramic radiographs. Most of these studies revealed high performance of various CNN models in automating tooth numbering. However, several studies also highlighted limitations of CNNs, such as the presence of false positives and false negatives in identifying decayed teeth, teeth with crown prosthetics, teeth adjacent to edentulous areas, dental implants, root remnants, wisdom teeth, and root canal-treated teeth. These limitations can be overcome by ensuring both the quality and quantity of datasets, as well as optimizing the CNN architecture. Conclusion: CNNs have demonstrated high performance in automated tooth numbering on panoramic radiographs. Future development of CNN-based models for this purpose should also consider different stages of dentition, such as the primary and mixed dentition stages, as well as the presence of various tooth conditions. Ultimately, an optimized CNN architecture can serve as the foundation for an automated tooth numbering system and for further artificial intelligence research on panoramic radiographs for a variety of purposes.

Prerequisite Research for the Development of an End-to-End System for Automatic Tooth Segmentation: A Deep Learning-Based Reference Point Setting Algorithm (자동 치아 분할용 종단 간 시스템 개발을 위한 선결 연구: 딥러닝 기반 기준점 설정 알고리즘)

  • Kyungdeok Seo;Sena Lee;Yongkyu Jin;Sejung Yang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.346-353
    • /
    • 2023
  • In this paper, we propose an innovative approach that leverages deep learning to find optimal reference points for achieving precise tooth segmentation in three-dimensional tooth point cloud data. A dataset consisting of 350 aligned maxillary and mandibular cloud data was used as input, and both end coordinates of individual teeth were used as correct answers. A two-dimensional image was created by projecting the rendered point cloud data along the Z-axis, where an image of individual teeth was created using an object detection algorithm. The proposed algorithm is designed by adding various modules to the Unet model that allow effective learning of a narrow range, and detects both end points of the tooth using the generated tooth image. In the evaluation using DSC, Euclid distance, and MAE as indicators, we achieved superior performance compared to other Unet-based models. In future research, we will develop an algorithm to find the reference point of the point cloud by back-projecting the reference point detected in the image in three dimensions, and based on this, we will develop an algorithm to divide the teeth individually in the point cloud through image processing techniques.

Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis

  • Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
    • Imaging Science in Dentistry
    • /
    • v.52 no.4
    • /
    • pp.383-391
    • /
    • 2022
  • Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.