• Title/Summary/Keyword: Teeth deflection

Search Result 23, Processing Time 0.022 seconds

Profile Shift Coefficient of Gear System Considering Teeth Deflection (변형을 고려한 기어 시스템의 전위 계수 선정)

  • Park, Su-Jin;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.758-763
    • /
    • 2003
  • A profile shifted gear system was analyzed to select the optimum profile shift coefficient, which minimizes gear teeth deflection. Contact force and deformation overlap were calculated by means of FEM and contact theory. The deformation overlap is suggested for an effective indicator to represent the whole deformation of gear system. The optimum value of profile shift coefficients was presented with respect to the deformation of gear system.

Tooth Load Sharing and Deformation Overlap of Helical Gear Pairs for the Manual Transmission of Automobile (수동변속기 헬리컬 기어치의 접촉력 평가를 통한 변형간섭 해석)

  • 박수진;유완석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.190-196
    • /
    • 2003
  • The load sharing and teeth deflection of helical gear system are analyzed to investigate the deformation overlap. The deformation overlap, which is calculated by the results of displacement analysis, is suggested as the basis for the tooth profile modification. Helical gear systems are formulated as contact problems, and solved by elastic contact theory and FEM. The developed computer program, which offers gear teeth deflection and deformation overlap, will be of much help to the improved design of manual transmissions for automobiles.

MEASUREMENTS OF SHRINKAGE STRESS AND REDUCTION OF INTER-CUSPAL DISTANCE IN MAXILLARY PREMOLARS RESULTING FROM POLYMERIZATION OF COMPOSITES AND COMPOMERS (광중합형 구치부 수복재료의 중합 수축력과 교두 변위의 상관관계)

  • Lee, Soon-Young;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.4
    • /
    • pp.346-352
    • /
    • 2004
  • The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. Composites and compomers which were used in this study were as follows: Dyract AP, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar, Heliomolar HB, and Compoglass F. For measuring of polymerization shrinkage stress, Stress measuring machine (R&B, Daejon, Korea) was used. One-way ANOVA analysis with Duncan's multiple comparison test were used to determine significant differences between the materials. For measuring of cuspal deflection of tooth, MOD cavities were prepared in 10 extracted maxillary premolars. And reduction of intercuspal distance was measured by strain measuring machine (R&B, Daejon, Korea) One-way ANOVA analysis with Turkey test were used to determine significant differences between the materials. Polymerization shrinkage stress is $\mathbb{\ulcorner}$Heliomolar, Z100, Pyramid < Synergy Compact Compoglass F < Dyract AP < Heliomolr HB, surefil$\mathbb{\lrcorner}$ (P < 0.05). And cuspal delfelction is $\mathbb{\ulcorner}$Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil. < Compoglass F < Pyramid, Dyract AP$\mathbb{\lrcorner}$ (P < 0.05). Measurements of ploymerization shrinkage stress and those of cuspal deflection of the teeth was different. There is no correlation between polymerization shrinkage stress and cuspal deflection of the teeth(p > 0.05).

Correlation between Linear polymerization shrinkage & tooth cuspal deflection (교두변위와 선수축량의 연관성 분석)

  • Lee, Soon-Young;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.6
    • /
    • pp.442-449
    • /
    • 2005
  • The purpose of the present study was to evaluate the relationship between the amount of cuspal deflection and linear polymerization shrinkage in resin composite and polyacid modified resin composite, For cuspal defelction and shrinkage measurement, Dyract AP, Compoglass F, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar and Heliomolar HB were used. For measuring polymerization shrinkage, a custom made linometer (R&B, Daejon, Korea) was used The amount of shrinkage among materials was compared using One-way ANOVA analysis and Tukey's test at the $95\%$ of confidence level For measuring cuspal deflection of teeth, standardized MOD cavities were prepared in extracted maxillary premolars. After a self-etching adhesive was applied, cavities were bulk filled with one of the felling materials. Fifteen teeth were used for each material. Cuspal deflection was measured by a custom made cuspal-deflection measuring device. One-way ANOVA analysis and Tukey's test were used to determine differences between the materials at the $95\%$ of confidence level, Correlation of polymerization shrinkage and cuspal deflection were analyzed by regression analysis. The amount of polymerization shrinkage from least to greatest was Heliomolar, Surefil < Heliomolar HB < Z100, Synergy Compact < Dyract AP < Pyramid, Compoglass F (p<0.05). The amount of cuspal deflection from least to greatest was Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil < Compoglass F < Pyramid, Dyract AP (p < 0.05). The amount of polymerization shrinkage and cuspal deflection showed a correlation (p<0.001).

Orthodontic correction of bialveolar protrusion by interproximal reproximation and water-soluble tubes bonded with deflection-based bonding technique: A case report (인접면 삭제와 변위-기반 접착술로 부착한 수용성 튜브를 이용한 절치 돌출의 교정 치료: 증례보고)

  • Roh, Yu-Yeon;Lim, Sung-Hoon;Jeong, Seo-Rin
    • The Journal of the Korean dental association
    • /
    • v.55 no.12
    • /
    • pp.850-860
    • /
    • 2017
  • Orthodontic treatment with premolar extraction is usually performed to correct bialveolar protrusion. These methods require the use of stiff rectangular working archwire which requires lengthy alignment and leveling before insertion. In this case report, interproximal reproximation was performed instead of extraction. To establish clearance between the archwire and resin domes fixing the archwire, an archwire was inserted into a water-soluble tube before fabricating resin domes. This tube is solved away by the saliva. During fabrication of resin domes, the archwire was deflected intentionally reflecting the displacement of teeth from their ideal position. This can be called as deflection-based bonding (DBB) technique. DBB is different from conventional method of positioning the brackets on its ideal position and then inserting an archwire to align the brackets. Because the orthodontic force of the archwire comes from its deflection from passive configuration, deflecting an archwire as needed can move the teeth more predictably than just bonding brackets on its ideal position. Also, areas with good alignment before orthodontic treatment can be maintained simply by not deflecting the archwire during bonding in these areas. After initial alignment, interproximal reproximation was performed to create 4.8 mm space in the maxillary arch and 4.2 mm space in the mandibular arch. These spaces were closed using orthodontic mini-implant anchorage thus retracting the maxillary incisors 4 mm posteriorly accompanied with 0.7 mm and 0.3 mm distal movement of right and left molars. By using interproximal reproximation and water-soluble tube with DBB, mild bialveolar protrusion was successfully treated without extraction.

  • PDF

Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling (엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정)

  • 류시형;최덕기;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy (측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건)

  • 류시형;최덕기;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD (구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구)

  • Koo, Bon-Chan;Sohn, Byung-Wha
    • The korean journal of orthodontics
    • /
    • v.24 no.3 s.46
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF

CASE REPORT : THE DISPLACEMENT OF PERMANENT TOOTH BUDS BY PERIAPICAL LESIONS OF ANTERIOR PRIMARY TEETH (유전치 치근단 병소에 의한 계승 영구치배의 변위)

  • Choi, Sun-Ah;Lee, Nan-Young;Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.224-228
    • /
    • 2005
  • The effect of primary tooth infection on permanent teeth was reported by many previous study. It is seen histologic change in the enamel forming organ and in the surrounding sac, thus produce the defect as either hypoplasia or hypocalcification and alter the eruption of the permanent teeth. The periapical inflammation cause permanent tooth displacement in various direction and can be classified into the three categories : rotation, deflection inversion. This study reported case which displacement of succedaneous teeth may be caused by periapical infection of primary dentition and concluded that treatment procedure of infected primary tooth is selected and performed by importance to retain the tooth for space maintain, possibility to successfully restored, evidence of abnormal development of the succedaneous tooth.

  • PDF

Research on the technical development by the CAD/CAM System (CAD/CAM시스템을 이용한 기술개발에 대한 연구 (워엄기어 개발을 중심으로))

  • Jeong, Seon-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.3
    • /
    • pp.40-71
    • /
    • 1986
  • By developing a computer program for the systematic design of worm gears, the design formulae and tables of AGMA, JGMA, BS and DIN are analized and compared. The computer program can be used on micro-computers. According to the input data of the reduction ratio, the center distance. the driving torque and the material as design parameters, the program calculate the most efficient worm gear dimension. The variation of the design parameters and other empirical coefficients in case of resulting an inadequate design gear dimension can be easily modified throuth the way of interactive method between the user and the monitoring system of computer. A proposal of the standardization of worm gears was made in which a standard module according to the DIN 323 standard series number was applied. For the more exact and effective calculation of the stress concentration and the deformation of gear teeth, a computer program using the boundary element method is also developed. Even the strength of the special gear shape such as Niemann's "Cavex" gear can be calculated in a short CPU-time. The most effort of this study has been layed on the developing a computer program for the correction of a tooth profile and face width which is most important design factor for an exact and wide teeth contacts under loads, especially by great and wide gears. For this purpose were investigated the tooth stiffness, the mesh interferences and the kinematics and the dynamics of gear mesh. The deflection and the deformation of the gear shaft due to the loads acting on gear and shaft were aslo considered. Some examples have shown the sufficient good status of teeth contact in which the correction of the tooth profile and face width were accomplished due to the calculated results.d results.

  • PDF