• 제목/요약/키워드: Teeth Deflection

검색결과 23건 처리시간 0.025초

변형을 고려한 기어 시스템의 전위 계수 선정 (Profile Shift Coefficient of Gear System Considering Teeth Deflection)

  • 박수진;유완석
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.758-763
    • /
    • 2003
  • A profile shifted gear system was analyzed to select the optimum profile shift coefficient, which minimizes gear teeth deflection. Contact force and deformation overlap were calculated by means of FEM and contact theory. The deformation overlap is suggested for an effective indicator to represent the whole deformation of gear system. The optimum value of profile shift coefficients was presented with respect to the deformation of gear system.

수동변속기 헬리컬 기어치의 접촉력 평가를 통한 변형간섭 해석 (Tooth Load Sharing and Deformation Overlap of Helical Gear Pairs for the Manual Transmission of Automobile)

  • 박수진;유완석
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.190-196
    • /
    • 2003
  • The load sharing and teeth deflection of helical gear system are analyzed to investigate the deformation overlap. The deformation overlap, which is calculated by the results of displacement analysis, is suggested as the basis for the tooth profile modification. Helical gear systems are formulated as contact problems, and solved by elastic contact theory and FEM. The developed computer program, which offers gear teeth deflection and deformation overlap, will be of much help to the improved design of manual transmissions for automobiles.

광중합형 구치부 수복재료의 중합 수축력과 교두 변위의 상관관계 (MEASUREMENTS OF SHRINKAGE STRESS AND REDUCTION OF INTER-CUSPAL DISTANCE IN MAXILLARY PREMOLARS RESULTING FROM POLYMERIZATION OF COMPOSITES AND COMPOMERS)

  • 이순영;박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제29권4호
    • /
    • pp.346-352
    • /
    • 2004
  • The purpose of present study was to evaluate the polymerization shrinkage stress and cuspal deflection in maxillary premolars resulting from polymerization shrinkage of composites and compomers. Composites and compomers which were used in this study were as follows: Dyract AP, Z100, Surefil. Pyramid, Synergy Compact, Heliomolar, Heliomolar HB, and Compoglass F. For measuring of polymerization shrinkage stress, Stress measuring machine (R&B, Daejon, Korea) was used. One-way ANOVA analysis with Duncan's multiple comparison test were used to determine significant differences between the materials. For measuring of cuspal deflection of tooth, MOD cavities were prepared in 10 extracted maxillary premolars. And reduction of intercuspal distance was measured by strain measuring machine (R&B, Daejon, Korea) One-way ANOVA analysis with Turkey test were used to determine significant differences between the materials. Polymerization shrinkage stress is $\mathbb{\ulcorner}$Heliomolar, Z100, Pyramid < Synergy Compact Compoglass F < Dyract AP < Heliomolr HB, surefil$\mathbb{\lrcorner}$ (P < 0.05). And cuspal delfelction is $\mathbb{\ulcorner}$Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil. < Compoglass F < Pyramid, Dyract AP$\mathbb{\lrcorner}$ (P < 0.05). Measurements of ploymerization shrinkage stress and those of cuspal deflection of the teeth was different. There is no correlation between polymerization shrinkage stress and cuspal deflection of the teeth(p > 0.05).

교두변위와 선수축량의 연관성 분석 (Correlation between Linear polymerization shrinkage & tooth cuspal deflection)

  • 이순영;박성호
    • Restorative Dentistry and Endodontics
    • /
    • 제30권6호
    • /
    • pp.442-449
    • /
    • 2005
  • 이 논문의 목적은 복합레진과 컴포머에서, 중합수축의 양과 이로 인하여 야기되는 교두변위와의 상관관계를 알아보기 위함이다. 수복재료로서 Dyract AP, Compoglass F, Z100, Surefil, Pyramid, Synergy Compact, Heliomolar와 Heliomolar HB가 사용되었으며, 접착제로서는 SE Bond 가 사용되었다. 수복재료의 중합수축의 양을 측정하기 위하여, 자체 제작한 linometer를 사용하여, 60초간 일어나는 선수축량을 측정하였다. 한 수복재료 당 10회 측정하였으며, one way ANOVA와 사후검정방법으로 Tukey Test를 이용하여 $95\%$ 신뢰수준에서 각 수복재료의 중합수축량의 차이를 비교하였다. 치아에서 일어나는 교두변위의 양을 측정하기 위하여 사람의 상악소구치에 표준화된 MOD 와동을 형성하고(깊이 3mm, 넓이 3.5mm), 접착제를 도포한 후 광조사 시킨 후, 수복재료로 충전하였다 치아를 자체 제작한 교두변위 측정장치에 위치시키고, 광조사 시키고, 이 때 발생하는 교두의 변위를 10분간 측정하였다. 한 수복재료 당 15회를 측정하였으며 one way ANOVA와 사후검정방법으로 Tykey Test를 이용하여 $95\%$ 신뢰수준에서 각 수복재료의 교두변위 량의 차이를 비교하였다. 중합수축의 양과 교두변위의 양의 상관관계를 회귀분석법을 이용하여 분석하였다. 중합수축의 양은 Heliomolar, Surefil < Heliomolar HB < Z100, Synergy Compact < Dyract AP, Pyramid, Compoglass F (p < 0.05), 교두변위의 양은 Heliomolar, Surefil, Z100, Heliomolar HB, Synergycompact < Compoglass F < Pyramid, Dyract AP (p < 0.05) 였다. 중합수축의 양과 교두변위는 높은 상관관계를 나타내었다 (p < 0.001).

인접면 삭제와 변위-기반 접착술로 부착한 수용성 튜브를 이용한 절치 돌출의 교정 치료: 증례보고 (Orthodontic correction of bialveolar protrusion by interproximal reproximation and water-soluble tubes bonded with deflection-based bonding technique: A case report)

  • 노유연;임성훈;정서린
    • 대한치과의사협회지
    • /
    • 제55권12호
    • /
    • pp.850-860
    • /
    • 2017
  • Orthodontic treatment with premolar extraction is usually performed to correct bialveolar protrusion. These methods require the use of stiff rectangular working archwire which requires lengthy alignment and leveling before insertion. In this case report, interproximal reproximation was performed instead of extraction. To establish clearance between the archwire and resin domes fixing the archwire, an archwire was inserted into a water-soluble tube before fabricating resin domes. This tube is solved away by the saliva. During fabrication of resin domes, the archwire was deflected intentionally reflecting the displacement of teeth from their ideal position. This can be called as deflection-based bonding (DBB) technique. DBB is different from conventional method of positioning the brackets on its ideal position and then inserting an archwire to align the brackets. Because the orthodontic force of the archwire comes from its deflection from passive configuration, deflecting an archwire as needed can move the teeth more predictably than just bonding brackets on its ideal position. Also, areas with good alignment before orthodontic treatment can be maintained simply by not deflecting the archwire during bonding in these areas. After initial alignment, interproximal reproximation was performed to create 4.8 mm space in the maxillary arch and 4.2 mm space in the mandibular arch. These spaces were closed using orthodontic mini-implant anchorage thus retracting the maxillary incisors 4 mm posteriorly accompanied with 0.7 mm and 0.3 mm distal movement of right and left molars. By using interproximal reproximation and water-soluble tube with DBB, mild bialveolar protrusion was successfully treated without extraction.

  • PDF

엔드밀 가공에서 형상 정밀도 향상을 위한 절삭 조건 선정 (Cutting Condition Selection for Geometrical Accuracy Improvement in End Milling)

  • 류시형;최덕기;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1784-1788
    • /
    • 2003
  • For the improvement of geometrical accuracy in end milling, cutting method and cutting condition selection are investigated in this paper. As machining processes are composed of several steps such as roughing, semi-finishing. and finishing, cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting. The effects of tool teeth numbers, tool geometry, and cutting conditions on the form error are analyzed. Using the from error prediction method from tool deflection, cutting condition for geometrical accuracy improvement is discussed. The characteristics and the difference of generated surface shape in up and down milling are dealt with and over-cut free condition in up milling is presented. The form error reduction method by alternating up and down milling is also suggested. The effectiveness of the presented method is examined from a set of cutting tests under various cutting conditions. This research contributes to cutting process optimization for the geometrical accuracy improvement in die and mold manufacture.

  • PDF

측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건 (Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy)

  • 류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

구치 편측확장을 위한 Precision Lingual Arch 적용시 응력분포에 관한 유한요소법적 연구 (AN ANALYSIS OF STRESS DISTRIBUTION IN THE CASE OF UNILATERAL MOLAR EXPANSION WITH PRECISION LINGUAL ARCH BY FINITE ELEMENT METHOD)

  • 구본찬;손병화
    • 대한치과교정학회지
    • /
    • 제24권3호
    • /
    • pp.721-733
    • /
    • 1994
  • Orthodontic tooth movement is closely related to the stress on the periodontal tissue. In this research the finite element method was used to observe the stress distribution and to find the best condition for effective tooth movement in the case of unilateral molar expansion. The author constructed the model of lower dental arch of average Korean adult and used $.032'\times.032'\times60mm$ TMA wire. The wire was deflected in the horizontal and vertical direction to give the 16 conditions. The following results were obtained ; 1. When the moment and force were controlled properly the movement of anchor tooth was minimized and the movement of moving tooth was maximized. 2. As the initial horizontal deflection increased the buccal displacement of both teeth was also increased. As the initial horizontal deflection increased the lingual movement of anchor tooth and the buccal movement of moving tooth increased. 3. When the initial horizontal and vertical deflection rate was 1.5 the effective movement of moving tooth was observed with minimal displacement of anchor tooth.

  • PDF

유전치 치근단 병소에 의한 계승 영구치배의 변위 (CASE REPORT : THE DISPLACEMENT OF PERMANENT TOOTH BUDS BY PERIAPICAL LESIONS OF ANTERIOR PRIMARY TEETH)

  • 최선아;이난영;이상호;이창섭
    • 대한소아치과학회지
    • /
    • 제32권2호
    • /
    • pp.224-228
    • /
    • 2005
  • 유치의 치수 감염을 적절히 치료하지 않으면 영구 계승치의 저형성이나 저석회화 같은 법랑질 형성부전, 치배의 위치변화, 맹출 부진이나 맹출 정지 같은 많은 합병증을 초래할 수 있다. 이 중에서도 계승 영구치배의 위치변화는 선행 유치의 변성된 치수로 인한 위치변화가 가장 많다. 본 증례는 조선대학교 치과병원 소아치과에 내원한 환아 중 유전치의 치근단 병소로 인해 계승영구전치 치배의 위치변화가 초래된 것으로 사료되어 유치 치료의 중요성을 문헌고찰과 함께 보고하는 바이다.

  • PDF

CAD/CAM시스템을 이용한 기술개발에 대한 연구 (워엄기어 개발을 중심으로) (Research on the technical development by the CAD/CAM System)

  • 정선모
    • 한국정밀공학회지
    • /
    • 제3권3호
    • /
    • pp.40-71
    • /
    • 1986
  • By developing a computer program for the systematic design of worm gears, the design formulae and tables of AGMA, JGMA, BS and DIN are analized and compared. The computer program can be used on micro-computers. According to the input data of the reduction ratio, the center distance. the driving torque and the material as design parameters, the program calculate the most efficient worm gear dimension. The variation of the design parameters and other empirical coefficients in case of resulting an inadequate design gear dimension can be easily modified throuth the way of interactive method between the user and the monitoring system of computer. A proposal of the standardization of worm gears was made in which a standard module according to the DIN 323 standard series number was applied. For the more exact and effective calculation of the stress concentration and the deformation of gear teeth, a computer program using the boundary element method is also developed. Even the strength of the special gear shape such as Niemann's "Cavex" gear can be calculated in a short CPU-time. The most effort of this study has been layed on the developing a computer program for the correction of a tooth profile and face width which is most important design factor for an exact and wide teeth contacts under loads, especially by great and wide gears. For this purpose were investigated the tooth stiffness, the mesh interferences and the kinematics and the dynamics of gear mesh. The deflection and the deformation of the gear shaft due to the loads acting on gear and shaft were aslo considered. Some examples have shown the sufficient good status of teeth contact in which the correction of the tooth profile and face width were accomplished due to the calculated results.d results.

  • PDF