• Title/Summary/Keyword: Tectonic Movement

Search Result 85, Processing Time 0.032 seconds

Movement of the Yangsan Fault and Tectonic History around the Korean Peninsula (양산단층의 구조운동과 한반도 주변 지구조사)

  • 장천중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.228-234
    • /
    • 1998
  • To interpret the relationship between movement of the Yangsan fault and tectonics around the Korean peninsula, the six sequential paleostresses were reconstructed from 1, 033 striated small faults which were measured at 37 outcrops along the strike of the Yangsan fault. And, the relationship between these paleostresses of the Yangsan fault and the tectonic events around the Korean peninsula were compared. As compared with the tectonic history around the Korean peninsula, the movement of the Yangsan fault is interpreted as follows; The initial feature of the Yangsan fault was formed with the development of extension fractures by the NW-SE extension. The fault experienced a right-lateral strike-slip movement continuously. The movements had been continued until the Late Miocene age, which was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events. In the last stage, the fault acted with a slight extension or right-lateral movement.

  • PDF

Tectonic Movement in the Korean Peninsula (I): The Spatial Distribution of Tectonic Movement Identified by Terrain Analyses (한반도의 지반운동 ( I ): DEM 분석을 통한 지반운동의 공간적 분포 규명)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.3 s.120
    • /
    • pp.368-387
    • /
    • 2007
  • In order to explain geomorphological characteristics of the Korean Peninsula, it is necessary to understand the spatial distribution of tectonic movements and its causes. Even though geomorphological elements which might have been formed by tectonic movements(e.g. tilted overall landform, erosion surface, river terrace, marine terraces, etc.) have long been considered as main geomorphological research topics in Korea, the knowledge on the spatial distribution of tectonic movement is still limited. This research aims to identify the spatial distributions of tectonic movement via sequential analyses of Digital Elevation Model(DEM). This paper first developed a set of terrain analysis techniques derived from theoretical interrelationships between tectonic uplifts and landsurface denudation processes. The terrain analyses used in this research assume that elevations along major drainage basin divides might preserve original landsurfaces(psuedo-landsuface) that were formed by tectonic movement with relatively little influence by denudation processes. Psuedo-landsurfaces derived from a DEM show clear spatial distribution patterns with distinct directional alignments. Lines connecting psuedo-landsufaces in a certain direction are defined as psuedo-landsurface axes, which are again categorized into two groups: the first is uplift psuedo-landsurface axes that indicate the axis of landmass uplift; and the second is denudational psuedo-landsurface axes that cross step-shaped pusedo-landsurfaces formed via surface denudation. In total, 13 axes of pusedo-landsurface are identified in the Korean Peninsula, which show distinct direction, length, and relative uplift rate. Judging from the distribution of psudo-landsurfaces and their axes, it is concluded that the Korean Peninsula ran be divided into four tectonic regions, which are named as the Northern Tectonic Region, Center Tectonic Region, Southern Tectonic Region, and East Sea Tectonic Region, respectively. The Northern Tectonic Region had experienced a regional uplift centered at the Kaema plateau, and the rate of uplift gradually decreased toward southern, western and eastern directions. The Center Tectonic Region shows an arch-shaped uplift. Its uplift rate is the highest along the East Sea and the rate decreases towards the Yellow sea. The Southern Tectonic Region shows an asymmetric uplift centered a line connecting Dukyu and Jiri Mountains in the middle of the region. The eastern side of the Southern Regions shows higher uplift rate than that of the western side. The East Sea Tectonic Region includes south-eastern coastal area of the peninsula and Gilju-Myeongchun Jigudae, which shows relatively recent tectonic movements in Korea. Since this research visualizes the spatial heterogeneity of long-term tenonic movement in the Korean peninsula, this would provide valuable basic information on long-term and regional differences of geomorphological evolutionary processes and regional geomorphological differences of the Korean Peninsula.

Analysis of South Korean Crust Deformation Using DGPS Data (DGPS 자료를 이용한 남한지역의 지각변위 분석)

  • Park Jun-Gu;Jo Jin-Dong;Im Sam Seong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.54-62
    • /
    • 2004
  • According to the Korea Tectonic Map, the Korean Peninsula can be divided into seven tectonic units and each of them shows a peculiar deformation pattern. In order to estimate an amount of crustal deformation in the Korean peninsula, we obtained the velocity vector fields of South Korea by dealing with the data set of the years 2001 and 2002, measured from the permanent GPS stations across the country To obtain a relatively precise coordinate of each station, we used GAMIT that is a comprehensive GPS analysis package developed at MIT, Then, a Kalman filter called GLOBK is used to combine the results from GAMIT and to estimate the relative velocity vector for the crustal deformations. The crustal movement of South Korea is turned out to be about 1mm per year westward and about 0.6mm per year southward. In case of Suwon and Seosan(Gyeonggi Massif), the movement occurs slightly to the north-east direction. The movement of a relative velocity field in the tectonic unit is unidirectional, yet the magnitude of the velocity is very small.

  • PDF

A Study on Spatial Construction of Tectonic in Russia Constructivism's Sculpture - Focused on the Milan Expo, 2015 Pavilion - (러시아 구성주의 조각의 텍토닉(Tectonic)적 공간 특성 - 밀라노 엑스포(Milan Expo, 2015) 파빌리온 중심으로 -)

  • Kim, Min-A;Lee, Chan
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.6
    • /
    • pp.107-118
    • /
    • 2015
  • Today, The representation of the modern space is experimented with shape and surface of the de-structural point of view to make architecture and space, in terms of not being able to make defined by single regulation. However, it can correspond to the rapidly changing modern, but it is easy to fade of architecture fundamental meaning. Along with the need for the rise of the construction of fundamental space, should be built a 'tectonic' spatial, which is said to be building of logos. Tectonic, as norms for expressing the fundamental meaning of architecture, as to expression of construction, be unfolded with dualism such as science and art, technology and express, structure and formation, and it was introduced into the architecture through the construction expression of space that was a tectonic discussion of 19c german architects. On the other hand Constructivism which is avant-garde formative movement with Russia revolution, constructed 'sculpture' with the formative principles as tectonic. Tectonic's Formative characteristics can draw a conclusion with of tectonic characteristics of constructivism sculpture, space of logos will be realized through its study. Other hand, The pavilion, as symbol space, can be analyzed by tectonic properties, Pavilion, meaning the space is expressed in a variety of tectonic expression. As tectonic construction, fundamental ideology and symbolization of space is revealed metaphorically and visually.

Movement History of the Yangsan Fault based on Paleostress Analysis (고응력 분석을 통한 양산단층의 구조운동사)

  • 장천중;장태우
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.35-49
    • /
    • 1998
  • To interpret the movement historv of the Yangsan fault, the paleostresses were analyzed from about 1,000 striated small faults and 330 extension joints which were measured from 37 sites near and along the strike of the Yangsan fault from Yangsan-si, Kyeongsangnam-do to the Shinkwang-myeon, Kyeongsangbuk-do. Six sequential tectonic events have boen established as followings: (I) NW-SE extension, (Il) ENE-WSW compression and NNW-SSE extension, (III) NW-SE compression, (W) ENE-WSW extension, (V) E-W comoression and N-S extension, and (VI) NNE-SSW compression and(VI) NNE-SSWextension. The movement history of the Yangsan fault rnrning in NNE direction were inteepreted based on these six sequential stress fields. The initial feature of the Yangsan fault was formed at the first stage with the development of extension fractures by tectonic event (I) of NW-SE extension. The fault was acted continuously with a right-1ateral strike-slip movement by tectonic event( II) closely related to event( I). The movements had been continued until the Late Miocene. This age was the most active period in faulting. The left-lateral strike-slip movement was followed by subsequent tectonic events (ffi) and (IV). The activity of the Yangsan fault was suspended temporarily by compression of tectonic event (V) which was perpendicular to the strike of the fault. This period might be very short and the magnitude of the tectonic was also small. In the last stage, the fault acted with slight extension or right-lateral moveenent by tectonic event (VI).

  • PDF

The Feature of Indosinian Movement and its comparison with Yanshanian Movement in the Yanshanian area, China (중국 연산지역의 인지운동(印支運動)의 특징 및 연산운동(燕山運動)과의 비교)

  • 조성윤;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.45-51
    • /
    • 1997
  • Tectonic movements in the Mesozoic were significant events to structural evolution in East China, so far as to West Pacific area. Typical Mesozoic structures were formed and outcropped in Yanshanian mountain area in which Yanshanian movement was named. It is generally considered that the most of outcropping structures in this area were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed in Yanshanian movement. But general studies indicated recently that more than half of the folds were formed and most of fault were in great reverse activity during Indosinian movement in Late-Triassic epoch. The tectonic dynamics setting of Indosinian move ment is a N-S compressive stress system originated by northward movement of Sino-Korean massif and its collison with Xingan-Mongolia fold zone. A series of closed folds (nearly E-W axial trace)and some overturned folds were formed in Indosinian movement and incoaxially superposed by Yanshanian deformation, Faulting characteristcs in the area were thrust faulting caused by compressive stress in Indosinian movement, some of which appear to be positive structural inversion, and oblique-thrust caused by compressive-shear in Yanshanian movement.

  • PDF

Comparison of Uplift Rate in the Southern Coast of the Korean Peninsula (한반도 남부 해안의 융기율 비교)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.2
    • /
    • pp.55-67
    • /
    • 2019
  • This study tries to reveal and compare uplift rates in the southern coast of the Korean Peninsula, based on absolute ages from coastal terrace on the coast. The uplift rate in the East Coast from previous study ranges from 0.258 to 0.357 m/ka with a median rate of 0.262 m/ka and shows an increase trend from north to south. Median uplift rate of 0.082 m/ka with minimum and maximum rates of 0.053 m/ka and 0.127 m/ka, respectively, is calculated in the South Coast from previous and this studies. The uplift rate in the West Coast from 3 absolute ages in this study is 0.082~0.112 m/ka with a median rate of 0.090 m/ka. Based on these uplift rates in the southern coast of the Korean Peninsula, it can be concluded that since MIS 5, the East Coast has experienced 3 to 4 times faster uplift rate than the West and South Coasts. However, this study suggests that more discussion on whether these uplift rates are long-term tectonic movement associated with tilted warping movement since the Tertiary or short-term tectonic movement associated with isostatic rebound due to sea level change since the Last Interglacial is needed.

Quaternary Tectonic Movement on Cheju Island (제주도의 제4기 지구조운동)

  • Hwang, Jae Ha;Lee, Byung Joo;Song, Kyo Young
    • Economic and Environmental Geology
    • /
    • v.27 no.2
    • /
    • pp.209-212
    • /
    • 1994
  • Cheju Island was formed by volcanic activity probably related to the inferred geodynamics in the early Quaternary times. Paleostress analysis, in spite of a few fault slip data collected near Sanbangsan trachyte dome (dated 0.87 Ma) represents an extentional tectonic event with the direction ENE-WSW. Joint anayses in the vicinity of Seahwa reveal three extensional tectonic events of directions NW-SE, NE-SW and ENE-WSW. Especially the extensional event with the direction ENE-WSW affected the whole Cheju area during the most recent time.

  • PDF

Uplift Rate in the Eastern Block of the Ulsan Fault (울산단층 동부 지괴의 융기율)

  • Lee, Gwang-Ryul;Park, Chung-Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.27 no.4
    • /
    • pp.29-39
    • /
    • 2020
  • This study estimated influences of the Ulsan Fault on tectonic movement and uplift characteristics in the Eastern Block of the Ulsan Fault. The averaged uplift rate in the Northern Coast of the Eastern Block was 0.202 m/ka, while the site in Seokbyeong-ri, Guryongpo-eup, Pohang-si, showed relatively high rate of 0.249 m/ka, attributable to influences of small fault movement, called the Gangsa Fault. Higher averaged rate of 0.270 m/ka than in the Northern Coast was calculated in the Southern Coast of the Eastern Block. The site in north of Haseo-ri, Yangnam-myeon, Gyeongju-si, showed the highest rate, suggesting influences of the Eupcheon Fault. The Western Block of the Ulsan Fault indicated the averaged rate of 0.208 m/ka, similar to that of the Northern Coast. The sites approximately 10 km apart from the Ulsan Fault showed 1.3 times higher rate in the Eastern Block than in the Western Block, while similar rates were calculated in the sites >20 km apart from the Ulsan Fault. These distributions of the rate suggest that the Ulsan Fault has significantly influenced development of marine terrace and tectonic movement in the study area, while local fault movements have also played a role.