• Title/Summary/Keyword: Technology Marketing

Search Result 2,013, Processing Time 0.035 seconds

Effects of 1-methylcyclopropene (1-MCP) on Fruit Quality and Occurrence of Physiological Disorders of Asian Pear (Pyrus pyrifolia), 'Wonhwang' and 'Whasan', during Shelf-life (동양배 '원황' 및 '화산'의 상온유통 중 품질 및 생리장해 발생에 미치는 1-methylcyclopropene (1-MCP) 처리의 영향)

  • Lee, Ug-Yong;Oh, Kyoung-Young;Moon, Seung-Joo;Hwang, Yong-Soo;Chun, Jong-Pil
    • Horticultural Science & Technology
    • /
    • v.30 no.5
    • /
    • pp.534-542
    • /
    • 2012
  • This study was conducted to investigate the effect of 1-methylcyclopropene (1-MCP) on fruit quality and incidence of physiological disorders for keeping freshness during marketing period in Asian pear (Pyrus pyrifolia Nakai) 'Wonhwang' and 'Whasan'. Fruits were treated with $1{\mu}L{\cdot}L^{-1}$ 1-MCP for 12 hours at $25^{\circ}C$, at two or three stages of ripeness as determined by days after full bloom (DAFB). Fruits were harvested at 130 and 140 DAFB in early season cultivar 'Wonhwang' and 135, 145, and 150 DAFB in mid-season cultivar 'Whasan', respectively. Fruits were stored at $25^{\circ}C$ for 21 days and measured the flesh firmness, weight loss, soluble solids, acidity, ethylene, respiration and severity of physiological disorders at week interval. 1-MCP treatment to 'Wonhwang' pears harvested at 130 and 140 DAFB effectively delayed firmness loss during storage at $25^{\circ}C$. Untreated fruits of 'Wonhwang' pears harvested at 130 DAFB showed 32.3 and 10.1N of firmness after 14 and 21 days of shelf-life at $25^{\circ}C$, respectively, while those of the 1-MCP treated fruits showed 39.4 and 33.1N during same period. In the fruits harvested at 140 DAFB, the firmness of untreated fruit was lowered to 14.8 and 6.6N after 14 and 21 days, respectively, but those of 1-MCP treated fruit were 35.0 and 33.3N, respectively. Whereas, 1-MCP treatment delayed firmness loss only in the fruit harvested late (150 DAFB) in 'Whasan' pears. Higher soluble solids content and acidity during extended shelf-life were apparent in 1-MCP treated 'Wonhwang' pears, while those of 'Whasan' pears were little changed. 'Wonhwang' pears showed a relatively high ethylene production (maximum $0.58{\mu}l{\cdot}L^{-1}$) in the fruits harvested late than early harvested one. 'Whasan' pears showed little amount of ethylene production regardless of extended shelf-life. 1-MCP treatment to 'Wonhwang' pears decreased respiration rate following shelf-life, 42 and 50% reduction were observed at 14 days of shelf-life when compared with those of untreated ones harvested at 130 and 140 DAFB, respectively. No reduction of respiration rate by the treatment of 1-MCP was detected in 'Whasan' pears which showed considerably low respiration rate compared with 'Wonhwang' pears. Harvest time influenced the level of physiological disorders together with extension of shelf-life in both the cultivars. 1-MCP treatment completely blocked the incidence of internal browning of 'Wonhwang' pears harvested at 130 DAFB, and reduced the incidences of pithiness and core browning, while it promoted the flesh spot decay disorder regardless of harvest time. 1-MCP treatment was of little benefit for the prevention of physiological disorders in 'Whasan' pears compared with those of 'Wonhwang'.

An Ontology Model for Public Service Export Platform (공공 서비스 수출 플랫폼을 위한 온톨로지 모형)

  • Lee, Gang-Won;Park, Sei-Kwon;Ryu, Seung-Wan;Shin, Dong-Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.149-161
    • /
    • 2014
  • The export of domestic public services to overseas markets contains many potential obstacles, stemming from different export procedures, the target services, and socio-economic environments. In order to alleviate these problems, the business incubation platform as an open business ecosystem can be a powerful instrument to support the decisions taken by participants and stakeholders. In this paper, we propose an ontology model and its implementation processes for the business incubation platform with an open and pervasive architecture to support public service exports. For the conceptual model of platform ontology, export case studies are used for requirements analysis. The conceptual model shows the basic structure, with vocabulary and its meaning, the relationship between ontologies, and key attributes. For the implementation and test of the ontology model, the logical structure is edited using Prot$\acute{e}$g$\acute{e}$ editor. The core engine of the business incubation platform is the simulator module, where the various contexts of export businesses should be captured, defined, and shared with other modules through ontologies. It is well-known that an ontology, with which concepts and their relationships are represented using a shared vocabulary, is an efficient and effective tool for organizing meta-information to develop structural frameworks in a particular domain. The proposed model consists of five ontologies derived from a requirements survey of major stakeholders and their operational scenarios: service, requirements, environment, enterprise, and county. The service ontology contains several components that can find and categorize public services through a case analysis of the public service export. Key attributes of the service ontology are composed of categories including objective, requirements, activity, and service. The objective category, which has sub-attributes including operational body (organization) and user, acts as a reference to search and classify public services. The requirements category relates to the functional needs at a particular phase of system (service) design or operation. Sub-attributes of requirements are user, application, platform, architecture, and social overhead. The activity category represents business processes during the operation and maintenance phase. The activity category also has sub-attributes including facility, software, and project unit. The service category, with sub-attributes such as target, time, and place, acts as a reference to sort and classify the public services. The requirements ontology is derived from the basic and common components of public services and target countries. The key attributes of the requirements ontology are business, technology, and constraints. Business requirements represent the needs of processes and activities for public service export; technology represents the technological requirements for the operation of public services; and constraints represent the business law, regulations, or cultural characteristics of the target country. The environment ontology is derived from case studies of target countries for public service operation. Key attributes of the environment ontology are user, requirements, and activity. A user includes stakeholders in public services, from citizens to operators and managers; the requirements attribute represents the managerial and physical needs during operation; the activity attribute represents business processes in detail. The enterprise ontology is introduced from a previous study, and its attributes are activity, organization, strategy, marketing, and time. The country ontology is derived from the demographic and geopolitical analysis of the target country, and its key attributes are economy, social infrastructure, law, regulation, customs, population, location, and development strategies. The priority list for target services for a certain country and/or the priority list for target countries for a certain public services are generated by a matching algorithm. These lists are used as input seeds to simulate the consortium partners, and government's policies and programs. In the simulation, the environmental differences between Korea and the target country can be customized through a gap analysis and work-flow optimization process. When the process gap between Korea and the target country is too large for a single corporation to cover, a consortium is considered an alternative choice, and various alternatives are derived from the capability index of enterprises. For financial packages, a mix of various foreign aid funds can be simulated during this stage. It is expected that the proposed ontology model and the business incubation platform can be used by various participants in the public service export market. It could be especially beneficial to small and medium businesses that have relatively fewer resources and experience with public service export. We also expect that the open and pervasive service architecture in a digital business ecosystem will help stakeholders find new opportunities through information sharing and collaboration on business processes.

Analysis of shopping website visit types and shopping pattern (쇼핑 웹사이트 탐색 유형과 방문 패턴 분석)

  • Choi, Kyungbin;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.85-107
    • /
    • 2019
  • Online consumers browse products belonging to a particular product line or brand for purchase, or simply leave a wide range of navigation without making purchase. The research on the behavior and purchase of online consumers has been steadily progressed, and related services and applications based on behavior data of consumers have been developed in practice. In recent years, customization strategies and recommendation systems of consumers have been utilized due to the development of big data technology, and attempts are being made to optimize users' shopping experience. However, even in such an attempt, it is very unlikely that online consumers will actually be able to visit the website and switch to the purchase stage. This is because online consumers do not just visit the website to purchase products but use and browse the websites differently according to their shopping motives and purposes. Therefore, it is important to analyze various types of visits as well as visits to purchase, which is important for understanding the behaviors of online consumers. In this study, we explored the clustering analysis of session based on click stream data of e-commerce company in order to explain diversity and complexity of search behavior of online consumers and typified search behavior. For the analysis, we converted data points of more than 8 million pages units into visit units' sessions, resulting in a total of over 500,000 website visit sessions. For each visit session, 12 characteristics such as page view, duration, search diversity, and page type concentration were extracted for clustering analysis. Considering the size of the data set, we performed the analysis using the Mini-Batch K-means algorithm, which has advantages in terms of learning speed and efficiency while maintaining the clustering performance similar to that of the clustering algorithm K-means. The most optimized number of clusters was derived from four, and the differences in session unit characteristics and purchasing rates were identified for each cluster. The online consumer visits the website several times and learns about the product and decides the purchase. In order to analyze the purchasing process over several visits of the online consumer, we constructed the visiting sequence data of the consumer based on the navigation patterns in the web site derived clustering analysis. The visit sequence data includes a series of visiting sequences until one purchase is made, and the items constituting one sequence become cluster labels derived from the foregoing. We have separately established a sequence data for consumers who have made purchases and data on visits for consumers who have only explored products without making purchases during the same period of time. And then sequential pattern mining was applied to extract frequent patterns from each sequence data. The minimum support is set to 10%, and frequent patterns consist of a sequence of cluster labels. While there are common derived patterns in both sequence data, there are also frequent patterns derived only from one side of sequence data. We found that the consumers who made purchases through the comparative analysis of the extracted frequent patterns showed the visiting pattern to decide to purchase the product repeatedly while searching for the specific product. The implication of this study is that we analyze the search type of online consumers by using large - scale click stream data and analyze the patterns of them to explain the behavior of purchasing process with data-driven point. Most studies that typology of online consumers have focused on the characteristics of the type and what factors are key in distinguishing that type. In this study, we carried out an analysis to type the behavior of online consumers, and further analyzed what order the types could be organized into one another and become a series of search patterns. In addition, online retailers will be able to try to improve their purchasing conversion through marketing strategies and recommendations for various types of visit and will be able to evaluate the effect of the strategy through changes in consumers' visit patterns.

A Study on the Entrepreneurial Intention of College Students in the Entertainment Industry with Idea Education and Support for Startup Infrastructure (아이디어 교육 및 창업 인프라 지원이 엔터테인먼트 산업 분야에 대한 대학생 창업의도 연구)

  • Lee, Ji-Hun
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.19-31
    • /
    • 2021
  • This study tried to identify the characteristics of college students' entrepreneurial intentions in the entertainment industry, focusing on existing literature studies. Based on this, it was intended to suggest realistic educational alternatives for university student start-ups and implications for start-up management to university start-up officials and those in charge of national start-up support policy. Therefore, the implications of this study are as follows. First, technology(item) for idea creation education, which is an essential element in the entertainment industry, how to connect ideas and products, technology methods that can increase content value, and user characteristics education within the entertainment industry will need to be continued. In addition, along with the idea education, it is necessary to increase the understanding of start-up business management such as financing, human resource management, marketing, and operation management, and furthermore, confidence education should be provided so that the possibility of success in an entertainment start-up and a sense of adventure in a new job can be developed. Second, the space and equipment necessary for start-up (club room, student start-up room, entertainment-related equipment, etc.) should be provided centering on the opinion survey of students who are interested in starting a business, and various regulations of universities and government for student start-up should be relaxed. will have to In addition, education for the formation of entrepreneurial knowledge inside and outside of the school, special lectures and consultations by experts, and on-the-spot education, etc., should be made to create more practical entrepreneurial knowledge. something to do. Third, for students wishing to start a business in the entertainment industry, it is necessary to inform their families about the field situation of the entertainment industry accurately so that their children can develop a positive perception rather than a negative perception when choosing a business field. In addition, by promoting various successful cases of college students to their families after starting a business, families should be encouraged so that their children can develop a challenging spirit about starting a business. Fourth, it should be possible to form continuous clubs or gatherings with friends who wish to start a business in the entertainment industry, and furthermore, an opportunity to listen to the opinions of friends who actually started a business through these meetings should be provided. In addition, the meeting and the formation of friends should create a place for discussion about writing a business plan, how to succeed in starting a business, and management of startups, and psychological stimulation activities should be conducted so that each other's will to start a business arises. Fifth, various knowledge related to start-up (methods for securing funds, management of start-up organizations, grasping information about the market in which they want to start a business, etc.) should be cultivated, and how to write a business plan for the various entertainment industry fields they want to start up. You will also need to train them to be practical. Also, based on this knowledge formation, students themselves should be able to respond to risks and changes that may occur in entrepreneurship. Lastly, it is necessary to increase the understanding of business start-up management, and various psychological stimulation activities are needed to make the confidence and fear of starting a business disappear.

The Characteristics and Performances of Manufacturing SMEs that Utilize Public Information Support Infrastructure (공공 정보지원 인프라 활용한 제조 중소기업의 특징과 성과에 관한 연구)

  • Kim, Keun-Hwan;Kwon, Taehoon;Jun, Seung-pyo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.1-33
    • /
    • 2019
  • The small and medium sized enterprises (hereinafter SMEs) are already at a competitive disadvantaged when compared to large companies with more abundant resources. Manufacturing SMEs not only need a lot of information needed for new product development for sustainable growth and survival, but also seek networking to overcome the limitations of resources, but they are faced with limitations due to their size limitations. In a new era in which connectivity increases the complexity and uncertainty of the business environment, SMEs are increasingly urged to find information and solve networking problems. In order to solve these problems, the government funded research institutes plays an important role and duty to solve the information asymmetry problem of SMEs. The purpose of this study is to identify the differentiating characteristics of SMEs that utilize the public information support infrastructure provided by SMEs to enhance the innovation capacity of SMEs, and how they contribute to corporate performance. We argue that we need an infrastructure for providing information support to SMEs as part of this effort to strengthen of the role of government funded institutions; in this study, we specifically identify the target of such a policy and furthermore empirically demonstrate the effects of such policy-based efforts. Our goal is to help establish the strategies for building the information supporting infrastructure. To achieve this purpose, we first classified the characteristics of SMEs that have been found to utilize the information supporting infrastructure provided by government funded institutions. This allows us to verify whether selection bias appears in the analyzed group, which helps us clarify the interpretative limits of our study results. Next, we performed mediator and moderator effect analysis for multiple variables to analyze the process through which the use of information supporting infrastructure led to an improvement in external networking capabilities and resulted in enhancing product competitiveness. This analysis helps identify the key factors we should focus on when offering indirect support to SMEs through the information supporting infrastructure, which in turn helps us more efficiently manage research related to SME supporting policies implemented by government funded institutions. The results of this study showed the following. First, SMEs that used the information supporting infrastructure were found to have a significant difference in size in comparison to domestic R&D SMEs, but on the other hand, there was no significant difference in the cluster analysis that considered various variables. Based on these findings, we confirmed that SMEs that use the information supporting infrastructure are superior in size, and had a relatively higher distribution of companies that transact to a greater degree with large companies, when compared to the SMEs composing the general group of SMEs. Also, we found that companies that already receive support from the information infrastructure have a high concentration of companies that need collaboration with government funded institution. Secondly, among the SMEs that use the information supporting infrastructure, we found that increasing external networking capabilities contributed to enhancing product competitiveness, and while this was no the effect of direct assistance, we also found that indirect contributions were made by increasing the open marketing capabilities: in other words, this was the result of an indirect-only mediator effect. Also, the number of times the company received additional support in this process through mentoring related to information utilization was found to have a mediated moderator effect on improving external networking capabilities and in turn strengthening product competitiveness. The results of this study provide several insights that will help establish policies. KISTI's information support infrastructure may lead to the conclusion that marketing is already well underway, but it intentionally supports groups that enable to achieve good performance. As a result, the government should provide clear priorities whether to support the companies in the underdevelopment or to aid better performance. Through our research, we have identified how public information infrastructure contributes to product competitiveness. Here, we can draw some policy implications. First, the public information support infrastructure should have the capability to enhance the ability to interact with or to find the expert that provides required information. Second, if the utilization of public information support (online) infrastructure is effective, it is not necessary to continuously provide informational mentoring, which is a parallel offline support. Rather, offline support such as mentoring should be used as an appropriate device for abnormal symptom monitoring. Third, it is required that SMEs should improve their ability to utilize, because the effect of enhancing networking capacity through public information support infrastructure and enhancing product competitiveness through such infrastructure appears in most types of companies rather than in specific SMEs.

The Effect of PL Leadership and Characteristics of Project on Project Participants' Satisfaction and Performance (PL 리더십 성향과 프로젝트 특성요인이 프로젝트 참여 만족 및 성과에 미치는 영향)

  • Yang, Hee-Dong;Kim, Myung-Jin;Kang, So-Ra
    • Asia pacific journal of information systems
    • /
    • v.20 no.4
    • /
    • pp.53-79
    • /
    • 2010
  • The study was originated from recognition that project participants' satisfaction should be Improved to raise project performance and to make progress of a successful project since the above dissatisfaction was operated as a danger factor of the project. The study selected one large-scale sample project and attempted measuring characteristics of the project, participants' satisfaction and project performance with the whole project participants. The study analyzed correlations between individual level (team members) and group level (development team), and examined what effect a sub project manager under complicated hierarchical organization of the large-scale project, namely PL (project leader)'s leadership style had on each individual project participant's satisfaction and what effect project uncertainty in organization/technology environment had on project participants' satisfaction and project performance. The study verified that development team (group) had an effect on team member (individual)-level project participants' satisfaction by disclosing that there was a significant dispersion among groups within project participants' satisfaction by each individual. It is analyzed that it is necessary to make improvement through approach by each pertinent team to raise individual-level project participants' satisfaction. The study also verified PL's ideal leadership under strict methodology and hierarchical control of the large-scale project. Based on the verification of the hypotheses, the results of the analysis were produced as follows. First, the development team affects the satisfaction level that an individual has when he/she participates in a project. This suggests that the satisfaction with project participation should be improved at the team level. In addition, the project management style and leadership orientation of the manager of a sub project who is mostly affected by the team proved to have a direct influence on the satisfaction with project participation and project performances. Second, both the performance-oriented leadership and the relationship-oriented leadership of the PL of the development team were verified to have a significant effect on the satisfaction of the team members associated with project participation. In other words, when the team members recognize that the PL of the development team shows both the performance-oriented leadership and the relationship-oriented leadership, their satisfaction with project participation increases accordingly. Third, it was verified that the uncertainty of the organizational environment significantly affects the satisfaction level when the PL of the development team exerts a relationship-oriented and performance-oriented leadership. The higher the uncertainty of the organizational environment is, the more the satisfaction with project participation decreases whereas the relationship-oriented leadership has a more positive effect on the satisfaction than the performance-oriented leadership style. Fourth, when the PL of the development team exerts the relationship-related and performance-related leadership, the uncertainty of the technological environment has a significant influence on the satisfaction level. The higher the uncertainty of the technological environment is, the more the satisfaction with project participation decreases whereas the performance-oriented leadership has a more positive effect on the satisfaction than the relationship-oriented leadership style. The result of the research on the uncertainty of the project environment suggests that when the development team leader exerts a relationship-oriented and performance-oriented leadership style, the uncertainty of the organizational environment has a significant effect on the satisfaction with project participation; the higher the uncertainty of the organizational environment, the more the satisfaction level decreases, and the relationship-oriented leadership style affects the satisfaction level more positively than the performance-oriented leadership style. In addition, when the development team leader displays a relationship-oriented and performance-oriented leadership style, the uncertainty of the technological environment has a significant effect on the satisfaction with project participation; the higher the uncertainty of the technological environment. the more the satisfaction level decreases. The performance-oriented leadership style as well affects the satisfaction level more positively than the relationship-oriented leadership style. Based on the above results, the research provides the following implications when handling multiple concurrent projects. First, the satisfaction with the participation in the multiple concurrent projects needs to be enhanced at the team (group) level. Second. the manager of the project team, particularly the middle managers should have both a performance-oriented and relationship (task and human)-oriented attitude and exert a consolidated leadership in order to improve the satisfaction of team members with project participation and their performances. Third, as the uncertainty factor of the technological and organizational environment among the characteristics factors of the project has room for methodological improvement depending on one's effort even though there are some complications, we need to continuously prevent and control the risks resulting from the uncertainties of the technological and organizational environment of the project in order to enhance the satisfaction of project participation and project performances. Fourth, the performance (task)-oriented leadership is required when there is uncertainty in a technological environment while the relationship (human)-oriented leadership is required when there is uncertainty in an organizational environment. This research has the following limitations. First, this research intended to select one large-sized sample project and measure the project characteristics, the satisfaction of all the participants associated with project participation, and their performances. Therefore, it is inappropriate to generalize and apply the result of this result onto other numerous projects. Second, as this case study entailed a survey to measure the characteristics factors and performance of the project, since the result value was based on the perception of project team members, the data may have insufficient objectivity. Third, though this research targeted on all the project participants, some development teams did not provide sufficient data and questionnaires were collected from some specific development teams among the 23 development teams, causing a significant deviation in the response rate among the development teams. Therefore, we need to continuously conduct the follow-up researches making comparisons among the multiple projects, and centering on the characteristics factors of the project and its satisfaction level.

Customer Behavior Prediction of Binary Classification Model Using Unstructured Information and Convolution Neural Network: The Case of Online Storefront (비정형 정보와 CNN 기법을 활용한 이진 분류 모델의 고객 행태 예측: 전자상거래 사례를 중심으로)

  • Kim, Seungsoo;Kim, Jongwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.221-241
    • /
    • 2018
  • Deep learning is getting attention recently. The deep learning technique which had been applied in competitions of the International Conference on Image Recognition Technology(ILSVR) and AlphaGo is Convolution Neural Network(CNN). CNN is characterized in that the input image is divided into small sections to recognize the partial features and combine them to recognize as a whole. Deep learning technologies are expected to bring a lot of changes in our lives, but until now, its applications have been limited to image recognition and natural language processing. The use of deep learning techniques for business problems is still an early research stage. If their performance is proved, they can be applied to traditional business problems such as future marketing response prediction, fraud transaction detection, bankruptcy prediction, and so on. So, it is a very meaningful experiment to diagnose the possibility of solving business problems using deep learning technologies based on the case of online shopping companies which have big data, are relatively easy to identify customer behavior and has high utilization values. Especially, in online shopping companies, the competition environment is rapidly changing and becoming more intense. Therefore, analysis of customer behavior for maximizing profit is becoming more and more important for online shopping companies. In this study, we propose 'CNN model of Heterogeneous Information Integration' using CNN as a way to improve the predictive power of customer behavior in online shopping enterprises. In order to propose a model that optimizes the performance, which is a model that learns from the convolution neural network of the multi-layer perceptron structure by combining structured and unstructured information, this model uses 'heterogeneous information integration', 'unstructured information vector conversion', 'multi-layer perceptron design', and evaluate the performance of each architecture, and confirm the proposed model based on the results. In addition, the target variables for predicting customer behavior are defined as six binary classification problems: re-purchaser, churn, frequent shopper, frequent refund shopper, high amount shopper, high discount shopper. In order to verify the usefulness of the proposed model, we conducted experiments using actual data of domestic specific online shopping company. This experiment uses actual transactions, customers, and VOC data of specific online shopping company in Korea. Data extraction criteria are defined for 47,947 customers who registered at least one VOC in January 2011 (1 month). The customer profiles of these customers, as well as a total of 19 months of trading data from September 2010 to March 2012, and VOCs posted for a month are used. The experiment of this study is divided into two stages. In the first step, we evaluate three architectures that affect the performance of the proposed model and select optimal parameters. We evaluate the performance with the proposed model. Experimental results show that the proposed model, which combines both structured and unstructured information, is superior compared to NBC(Naïve Bayes classification), SVM(Support vector machine), and ANN(Artificial neural network). Therefore, it is significant that the use of unstructured information contributes to predict customer behavior, and that CNN can be applied to solve business problems as well as image recognition and natural language processing problems. It can be confirmed through experiments that CNN is more effective in understanding and interpreting the meaning of context in text VOC data. And it is significant that the empirical research based on the actual data of the e-commerce company can extract very meaningful information from the VOC data written in the text format directly by the customer in the prediction of the customer behavior. Finally, through various experiments, it is possible to say that the proposed model provides useful information for the future research related to the parameter selection and its performance.

Structural Adjustment of Domestic Firms in the Era of Market Liberalization (시장개방(市場開放)과 국내기업(國內企業)의 구조조정(構造調整))

  • Seong, So-mi
    • KDI Journal of Economic Policy
    • /
    • v.13 no.4
    • /
    • pp.91-116
    • /
    • 1991
  • Market liberalization progressing simultaneously with high and rapidly rising domestic wages has created an adverse business environment for domestic firms. Korean firms are losing their international competitiveness in comparison to firms from LDC(Less Developed Countries) in low-tech industries. In high-tech industries, domestic firms without government protection (which is impossible due to the liberalization policy and the current international status of the Korean economy) are in a disadvantaged position relative to firms from advanced countries. This paper examines the division of roles between the private sector and the government in order to achieve a successful structural adjustment, which has become the impending industrial policy issue caused by high domestic wages, on the one hand, and the opening of domestic markets, on the other. The micro foundation of the economy-wide structural adjustment is actually the restructuring of business portfolios at the firm level. The firm-level business restructuring means that firms in low-value-added businesses or with declining market niches establish new major businesses in higher value-added segments or growing market niches. The adjustment of the business structure at the firm level can only be accomplished by accumulating firm-specific managerial assets necessary to establish a new business structure. This can be done through learning-by-doing in the whole system of management, including research and development, manufacturing, and marketing. Therefore, the voluntary cooperation among the people in the company is essential for making the cost of the learning process lower than that at the competing companies. Hence, firms that attempt to restructure their major businesses need to induce corporate-wide participation through innovations in organization and management, encourage innovative corporate culture, and maintain cooperative labor unions. Policy discussions on structural adjustments usually regard firms as a black box behind a few macro variables. But in reality, firm activities are not flows of materials but relationships among human resources. The growth potential of companies are embodied in the human resources of the firm; the balance of interest among stockholders, managers, and workers of the company' brings the accumulation of the company's core competencies. Therefore, policymakers and economists shoud change their old concept of the firm as a technological black box which produces a marketable commodities. Firms should be regarded as coalitions of interest groups such as stockholders, managers, and workers. Consequently the discussion on the structural adjustment both at the macroeconomic level and the firm level should be based on this new paradigm of understanding firms. The government's role in reducing the cost of structural adjustment and supporting should the creation of new industries emphasize the following: First, government must promote the competition in domestic markets by revising laws related to antitrust policy, bankruptcy, and the promotion of small and medium-sized companies. General consensus on the limitations of government intervention and the merit of deregulation should be sought among policymakers and people in the business world. In the age of internationalization, nation-specific competitive advantages cannot be exclusively in favor of domestic firms. The international competitiveness of a domestic firm derives from the firm-specific core competencies which can be accumulated by internal investment and organization of the firm. Second, government must build up a solid infrastructure of production factors including capital, technology, manpower, and information. Structural adjustment often entails bankruptcies and partial waste of resources. However, it is desirable for the government not to try to sustain marginal businesses, but to support the diversification or restructuring of businesses by assisting in factor creation. Institutional support for venture businesses needs to be improved, especially in the financing system since many investment projects in venture businesses are highly risky, even though they are very promising. The proportion of low-value added production processes and declining industries should be reduced by promoting foreign direct investment and factory automation. Moreover, one cannot over-emphasize the importance of future-oriented labor policies to be based on the new paradigm of understanding firm activities. The old laws and instititutions related to labor unions need to be reformed. Third, government must improve the regimes related to money, banking, and the tax system to change business practices dependent on government protection or undesirable in view of the evolution of the Korean economy as a whole. To prevent rational business decisions from contradicting to the interest of the economy as a whole, government should influence the business environment, not the business itself.

  • PDF

Design of Client-Server Model For Effective Processing and Utilization of Bigdata (빅데이터의 효과적인 처리 및 활용을 위한 클라이언트-서버 모델 설계)

  • Park, Dae Seo;Kim, Hwa Jong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.109-122
    • /
    • 2016
  • Recently, big data analysis has developed into a field of interest to individuals and non-experts as well as companies and professionals. Accordingly, it is utilized for marketing and social problem solving by analyzing the data currently opened or collected directly. In Korea, various companies and individuals are challenging big data analysis, but it is difficult from the initial stage of analysis due to limitation of big data disclosure and collection difficulties. Nowadays, the system improvement for big data activation and big data disclosure services are variously carried out in Korea and abroad, and services for opening public data such as domestic government 3.0 (data.go.kr) are mainly implemented. In addition to the efforts made by the government, services that share data held by corporations or individuals are running, but it is difficult to find useful data because of the lack of shared data. In addition, big data traffic problems can occur because it is necessary to download and examine the entire data in order to grasp the attributes and simple information about the shared data. Therefore, We need for a new system for big data processing and utilization. First, big data pre-analysis technology is needed as a way to solve big data sharing problem. Pre-analysis is a concept proposed in this paper in order to solve the problem of sharing big data, and it means to provide users with the results generated by pre-analyzing the data in advance. Through preliminary analysis, it is possible to improve the usability of big data by providing information that can grasp the properties and characteristics of big data when the data user searches for big data. In addition, by sharing the summary data or sample data generated through the pre-analysis, it is possible to solve the security problem that may occur when the original data is disclosed, thereby enabling the big data sharing between the data provider and the data user. Second, it is necessary to quickly generate appropriate preprocessing results according to the level of disclosure or network status of raw data and to provide the results to users through big data distribution processing using spark. Third, in order to solve the problem of big traffic, the system monitors the traffic of the network in real time. When preprocessing the data requested by the user, preprocessing to a size available in the current network and transmitting it to the user is required so that no big traffic occurs. In this paper, we present various data sizes according to the level of disclosure through pre - analysis. This method is expected to show a low traffic volume when compared with the conventional method of sharing only raw data in a large number of systems. In this paper, we describe how to solve problems that occur when big data is released and used, and to help facilitate sharing and analysis. The client-server model uses SPARK for fast analysis and processing of user requests. Server Agent and a Client Agent, each of which is deployed on the Server and Client side. The Server Agent is a necessary agent for the data provider and performs preliminary analysis of big data to generate Data Descriptor with information of Sample Data, Summary Data, and Raw Data. In addition, it performs fast and efficient big data preprocessing through big data distribution processing and continuously monitors network traffic. The Client Agent is an agent placed on the data user side. It can search the big data through the Data Descriptor which is the result of the pre-analysis and can quickly search the data. The desired data can be requested from the server to download the big data according to the level of disclosure. It separates the Server Agent and the client agent when the data provider publishes the data for data to be used by the user. In particular, we focus on the Big Data Sharing, Distributed Big Data Processing, Big Traffic problem, and construct the detailed module of the client - server model and present the design method of each module. The system designed on the basis of the proposed model, the user who acquires the data analyzes the data in the desired direction or preprocesses the new data. By analyzing the newly processed data through the server agent, the data user changes its role as the data provider. The data provider can also obtain useful statistical information from the Data Descriptor of the data it discloses and become a data user to perform new analysis using the sample data. In this way, raw data is processed and processed big data is utilized by the user, thereby forming a natural shared environment. The role of data provider and data user is not distinguished, and provides an ideal shared service that enables everyone to be a provider and a user. The client-server model solves the problem of sharing big data and provides a free sharing environment to securely big data disclosure and provides an ideal shared service to easily find big data.

A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products (부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)

  • Kim, Dongsung;Kim, Kitae;Kim, Jongwoo;Park, Steve
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.93-108
    • /
    • 2014
  • To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.