본 연구는 중학교 기술 가정과 옷차림 단원을 위한 e-러닝 시스템을 구현함으로써 학습자의 흥미와 이해를 높여 보다 효과적인 교수 학습활동을 할 수 있게 하고 기술 가정 의생활 영역에 대한 e-러닝 개발의 기초자료가 되고자 하였다. 연구방법으로 구체적인 상황학습의 효과와 보다 현실감 있는 학습 환경을 제공하기 위해 학습내용을 학습자가 직접 클릭해서 조작할 수 있도록 구현하였고 학습자의 주의와 동기를 유발시킬 수 있도록 의류 쇼핑몰의 최신 의복자료를 이용하여 개성 있게 코디하는 방법 등을 제시하고 또래들의 패션 사진을 사례에 맞게 적절히 활용하였다. 연구의 결과를 요약하면 다음과 같다. 첫째, 시뮬레이션 조작과 가시적 관찰을 할 수 있는 학습 자료의 구현으로 보다 쉽게 학습목표에 도달할 수 있도록 하였다. 둘째, 텍스트 보다는 오디오와 이미지, 동영상 자료를 많이 사용하여 보다 효과적인 교수 학습 활동이 이루어지도록 하였다. 셋째, 옷차림 단원 학습은 특히 유행과도 관련이 있는데 멀티미디어가 갖는 현실감 있고 생동적인 교육 자료를 시의 적절하게 제공함으로써 e-러닝의 장점을 최대한 활용하였고 학습내용을 학습자 자신의 실생활과 관련된 사진이나 동영상으로 제시함으로써 학습자의 동기유발이 되도록 하였다. 이상과 같은 연구를 바탕으로 옷차림 단원의 학습에 있어 본 연구에서 사용한 저작도구 뿐 만 아니라 다양한 멀티미디어 저작도구를 활용한 e-러닝 콘텐츠 개발의 추가적 연구 활동과 풍부한 수업자료의 확보를 위한 교수 학습 자료의 DB 구축을 제언한다.
E-Learning is another way of teaching and learning. E-learning is a networked phenomenon allowing for instant revisions and distribution, and goes beyond training and instruction to the delivery of information and tools to improve performance. The benefits of e-learning are many, including cost-effectiveness, enhanced responsiveness to change, consistency, timely content, flexible accessibility, and providing customer value. The proponents of e-learning stress the importance of using communities of interest to support and enhance the learning process. They also emphasizes that people learn more effectively when they interact and are involved with other people participating in similar endeavors. Although the role of e-learning in higher education has significantly increased, the resistance to new technology by professors and lecturers in university and colleges worldwide remains high. The purpose of this study is to identify the determinants of attitude and planned behavior toward e-learning class in universities. A survey methodology was used to investigate a proposed model of influence, and structural equation modeling was used to analyze the results. The hypothesized model was largely supported by this analysis, and the overall results indicate that attitude toward e-learning systems is mostly influenced by the perceived ease of use as well as the level of perceived usefulness, where both factors are influenced by years of experiences in using cyber system and the technical support level. As in other TAM related research, it can be concluded that the perceived ease of use and perceived usefulness contribute to the future use of e-learning system.
Purpose: The research comprehends learning attitude level of Dental Technology Department students, searches variable element to affect and is trying to provide basic material of method arrangement to induce change of positive learning attitude. Methods: It was conducted survey 410 students, who understand purpose of the research, consentient to involve research, in universities which is located in Daegu area, Daejeon City, Gangwon province from Aug., 1stto Nov.,10th2017, Questionnaires were distributed to 410 students totally. it was finally analyzed 374 questionnaires except 36 questionnaires that answer was not sufficient. Results: The positive answer over 'Average (3)' among study attitude factors was presented highly in order of 'Targeting & Execution' (3.351). 'Effective Content Summary' (3.307), 'Study Plan' (3.173), 'Priority and Self-Management' (3.116), and 'Study Habit & Enhancement' (2.925) showed negative trend under average. The five sub-factors of learning attitude were examined according to general characteristics and there were statistically significant differences according to gender, grade, high school of origin, academic aptitude(p<0.01, p<0.001). Conclusion : As male students show more positive learning attitude than female students, we need to develop more special programs to encourage them. Meanwhile we also need to find out a motive to bring positive effect to change the academic aptitude and learning attitude of female students, or methods to improve their learning attitude in a complementary way by their high school, gender and grade.
The Weapon-Target Assignment(WTA) problem can be formulated as an optimization problem that minimize the threat of targets. Existing methods consider the trade-off between optimality and execution time to meet the various mission objectives. We propose a multi-agent reinforcement learning algorithm for WTA based on mean field game to solve the problem in real-time with nearly optimal accuracy. Mean field game is a recent method introduced to relieve the curse of dimensionality in multi-agent learning algorithm. In addition, previous reinforcement learning models for WTA generally do not consider weapon interference, which may be critical in real world operations. Therefore, we modify the reward function to discourage the crossing of weapon trajectories. The feasibility of the proposed method was verified through simulation of a WTA problem with multiple targets in realtime and the proposed algorithm can assign the weapons to all targets without crossing trajectories of weapons.
The Journal of Asian Finance, Economics and Business
/
제8권10호
/
pp.385-393
/
2021
In an effort to find ways to increase the effectiveness of online education, literature and empirical study based on the Technology Acceptance Model (TAM) have addressed a variety of questions, including perceived ease of use (PEU) and perceived usefulness (PU). After TAM, extensive studies have focused on the impact of extrinsic factors on PEU and PU, including Self-efficacy and Perceived Risk. This study aims to analyze the direct, indirect, and moderating effects of Self-efficacy and Perceived Risk on Online Learning Intention (OLI). Data was collected through a survey method from 472 students studying at universities in Vietnam. The collected data was analyzed using the PLS-SEM technique to test the hypotheses. The findings reveal that Technology Self-Efficacy influences the intention to take online courses both directly and indirectly through Perceived Ease of Use and Perceived Usefulness. Besides, Perceived Risk COVID-19 also has a positive effect on online learning intention, and plays a role as a moderating variable on the impact of PU on OLI. These findings suggest that students will have a stronger intention to study online when they are confident in their ability to use technology. When they believe in their ability to use technology, their online learning intention will also increase.
We design an ingenious view-pooling method named learning-based multiple pooling fusion (LMPF), and apply it to multi-view convolutional neural network (MVCNN) for 3D model classification or retrieval. By this means, multi-view feature maps projected from a 3D model can be compiled as a simple and effective feature descriptor. The LMPF method fuses the max pooling method and the mean pooling method by learning a set of optimal weights. Compared with the hand-crafted approaches such as max pooling and mean pooling, the LMPF method can decrease the information loss effectively because of its "learning" ability. Experiments on ModelNet40 dataset and McGill dataset are presented and the results verify that LMPF can outperform those previous methods to a great extent.
With the advent of deep learning, Artificial Intelligence (AI) technology has experienced rapid advancements, extending its application across various industrial sectors. However, the focus has shifted from the independent use of AI technology to its dispersion and proliferation through the open AI ecosystem. This shift signifies the transition from a phase of research and development to an era where AI technology is becoming widely accessible to the general public. However, as this dispersion continues, there is an increasing demand for the verification of outcomes derived from AI technologies. Causal AI applies the traditional concept of causal inference to AI, allowing not only the analysis of data correlations but also the derivation of the causes of the results, thereby obtaining the optimal output values. Causal AI technology addresses these limitations by applying the theory of causal inference to machine learning and deep learning to derive the basis of the analysis results. This paper analyzes recent cases of causal AI technology and presents the major tasks and directions of causal AI, extracting patterns between data using the correlation between them and presenting the results of the analysis.
Information-hiding technology is introduced into an optical ghost imaging encryption scheme, which can greatly improve the security of the encryption scheme. However, in the current mainstream research on camouflage ghost imaging encryption, information hiding techniques such as digital watermarking can only hide 1/4 resolution information of a cover image, and most secret images are simple binary images. In this paper, we propose an equal-resolution image-hiding encryption scheme based on deep learning and computational ghost imaging. With the equal-resolution image steganography network based on deep learning (ERIS-Net), we can realize the hiding and extraction of equal-resolution natural images and increase the amount of encrypted information from 25% to 100% when transmitting the same size of secret data. To the best of our knowledge, this paper combines image steganography based on deep learning with optical ghost imaging encryption method for the first time. With deep learning experiments and simulation, the feasibility, security, robustness, and high encryption capacity of this scheme are verified, and a new idea for optical ghost imaging encryption is proposed.
As AI technology advances, interest in performing multi-robot autonomous missions for manned-unmanned teaming (MUM-T) is increasing. In order to develop autonomous mission performance technology for multiple robots, simulation technology that reflects the characteristics of real robots and can flexibly apply various missions is needed. Additionally, in order to solve complex non-linear tasks, an API must be provided to apply multi-robot reinforcement learning technology, which is currently under active research. In this study, we propose the campaign model to flexibly simulate the missions of multiple robots. We then discuss the results of developing a simulation environment that can be edited and run and provides a reinforcement learning API including acceleration performance. The proposed simulated control module and simulated environment were verified using an enemy infiltration scenario, and parallel processing performance for efficient reinforcement learning was confirmed through experiments.
Purpose - The purpose of this thesis is to assess the product design digital learning status of universities that are currently involved in learning environment projects in manufacture and commerce integration (MCI). Thus, enterprises must keep learning and creating new inventions with revolutionary progress. Research design, data, and methodology - This study not only emphasizes the analysis of technical ability, course concepts, conducting models, and learning environments of every aspect, but also systematically probes the planning of learning, system framework, web learning, environmental activities, data statistics, and digitalized learning, among other aspects. Results - The results of this study help in finally understanding each school's manufacture and commerce integration situation, in order to evaluate product design learning. Consequently, it is essential to evaluate computer learning at schools, thereby affecting communication and the requirements of business education training. Conclusions - It is essential to focus on MCI to promote web teaching to preserve and enhance knowledge disseminating technologies, and immediately share knowledge with learners, while improving work efficiency and cultivating the talent needed by industry.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.