• Title/Summary/Keyword: Technical stress

Search Result 655, Processing Time 0.024 seconds

Factors Affecting Job Stress of School Nurse in Secondary School (중등 보건교사의 직무 스트레스에 영향을 미치는 요인)

  • Kang, In-Soon;Cho, Su-Youn;Jeong, Hee-Jin
    • Journal of the Korean Society of School Health
    • /
    • v.23 no.2
    • /
    • pp.286-295
    • /
    • 2010
  • Purpose: This study was conducted to identify the factors affecting the job stress of school nurses and reducing their the job stress by analyzing degree of the stress according to the factors related to job stress. Methods: The participants were 136 school nurses who worked in Pusan province. The Data were collected by self-reporting questionnaires from Dec. 11th in 2006 to Feb. 9th in 2007. The data were analyzed by Frequency, Mean, t-test, ANOVA, Pearson Correlation Coefficient and Stepwise multiple regression analysis (SPSSwin 12.0s). Results: There was significant difference of the degree of job stress in age. There was significantly negative relationship between the job characteristics and job stress (r=-.473), job satisfaction and job stress (r=-.561), personal values and job stress (r=-.429), achievement motivation and job stress (r=-.215) at p<.01 level. The major factor which influence the degree of job stress was job satisfaction. Conclusion: The factors affecting the job stress of school nurses was correlated with one another and influenced to the degree of the job stress directly and indirectly. The factor that affected the degree of the job stress directly was the job satisfaction and the personal values. As shown this result, it is important that the factor of the job stress lies in the mental characteristics.

Effect of welding variables on the crack arrest toughness of thick steel plate (선급 극후물재의 취성균열 전파 정지 인성에 미치는 용접변수의 영향)

  • Ryu, Kang-Mook;An, Gyu-Baek;Kim, Tae-Su;Lee, Tae-Yeung;Lee, Jong-Sub
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.103-103
    • /
    • 2009
  • As the size of containership increased over 14,000TEU, thick steel plate with high strength has been used. The plate thickness increased over 70mm and yield strength of the steel plate was around $47kg_f/mm^2$. Many researchers reported that the thick welded plate has low crack arrest toughness. They noticed the crack arrest ability is dependent on the plate thickness. In other words, brittle crack propagates straightly along the welded line and make abrupt fracture in the thick plate which causes low $K_{ca}$. In this study, the other factors, especially welding heat input, to cause low crack arrest toughness was investigated for thick steel plate welds. EH grade steel plates were used in this study and 50 to 80 thick plates were tested to confirm thickness sensitivity. Electro gas welding (EGW) and flux cored arc welding (FCAW) were adopted to prepare the welded joints. Temperature gradient ESSO test was performed to measure $K_{ca}$ values with the variation of welding variables. As a result of this study, regardless of plate thickness, welding heat input to cause welding residual stress around crack path is a key factor to control the brittle crack propagation in welded joints.

  • PDF

On the wind and earthquake response of reinforced concrete chimneys

  • Turkeli, Erdem;Karaca, Zeki;Ozturk, Hasan Tahsin
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.559-567
    • /
    • 2017
  • Slender structures like reinforced concrete (RC) chimneys are severely damaged or collapsed during severe wind storms or strong ground motions all over the world. Today, with the improvement in technology and industry, most factories need these slender structures with increasing height and decreasing in shell thickness causing vulnerable to winds and earthquakes. Main objectives in this study are to make structural wind and earthquake analysis of RC chimneys by using a well-known international standard CICIND 2001 and real recorded time history accelerations and to clarify weak points of these tall and slender structures against these severe natural actions. Findings of this study show that maximum tensile stress and shear stress approximately increase 103.90% and 312.77% over or near the openings on the body of the RC chimneys that cause brittle failure around this region of openings.

A Novel Technique for Characterizing the Influence of Refining Energy on the Mechanical Properties of TMP Fibres

  • Law, Ken;Mao, Changbin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.141-146
    • /
    • 2006
  • Mechanical fibres are commonly characterized by measuring their length distribution and freeness. These parameters, however, do not adequately characterize the influence of refining on their mechanical properties. In this work we conducted multiple compression on fibre mats prepared from different length fractions (Bauer McNet fractions) to generate stress-strain curves from which several quality parameters can be derived such as modulus, stress and toughness. We found that these characteristics of fibre are strongly influenced by the refining energy used to produce pulp; fibres of similar length exhibit different mechanical properties depending on the refining energy6 consumption.

  • PDF

Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations

  • Tufekci, Ekrem;Arpaci, Alaeddin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.131-150
    • /
    • 2006
  • Exact analytical solutions for in-plane static problems of planar curved beams with variable curvatures and variable cross-sections are derived by using the initial value method. The governing equations include the axial extension and shear deformation effects. The fundamental matrix required by the initial value method is obtained analytically. Then, the displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental matrix. The results are given in analytical forms. In order to show the advantages of the method, some examples are solved and the results are compared with the existing results in the literature. One of the advantages of the proposed method is that the high degree of statically indeterminacy adds no extra difficulty to the solution. For some examples, the deformed shape along the beam axis is determined and plotted and also the slope and stress resultants are given in tables.

Strength Evaluation of Friction Welded SUH35/SUB3 Considering Stress Singularity (응력특이성을 고려한 SUH35/SUH3 마찰용접재의 강도평가)

  • Chung, Nam-Yong;Park, Chul-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • Recently, application of friction welded SUH35/SUH3 is increasing in the manufacturing process of automotive engine valves For securing its reliability and a reasonable strength evaluation method, it is necessary to assess stress singularity under the residual stress condition on the friction welded interface between dissimilar materials. In this paper, strength evaluation method of friction welded materials was investigated by boundary element method and static tensile testing. An advanced method of quantitative strength evaluation for SUH35/SUH3 friction welded material is to be suggested by establishing fracture criterion by using stress singularity factors.

Finite Element Analysis on the Stress and Displacement Characteristics of Oil Pipe (오일 파이프의 응력 및 변형거동특성에 관한 유한요소해석)

  • Kim, Chung-Kyun;Cho, Seung-Hyun
    • Tribology and Lubricants
    • /
    • v.25 no.6
    • /
    • pp.374-380
    • /
    • 2009
  • This paper presents the stress and displacement characteristics of oil pipe using the finite element analysis. Displacement in axial direction and von Mises stress of a pipe were analyzed with three design factors, which are the pipe thickness, the corrugation pitch and the corrugation height, under uniform oil pressure. The FE computed results are presented between a conventional round pipe and a rectangular pipe, which is manufactured in this study. The computed FE results show that maximum displacement in axial direction and von Mises stress of pipe are increased linearly as the oil pressure increases. Also, they are increased linearly as the corrugation pitch, corrugation height and pipe thickness increases. von Mises stress of a rectangular pipe at the edge increases sharply compared with that of a conventional round pipe. Therefore, the strength of rectangular pipe is superior to that of a conventional round pipe.

Die Design of Hot Extrusion for Hexagonal Insert (Hexagonal 인서트용 열간압출 금형설계)

  • 권혁홍;이정로
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-37
    • /
    • 2002
  • The use of hexagonal ceramic inserts for copper extrusion dies offers significant technical and economic advantages over other forms of manufacture. In this paper the data on the loading of the tools is determined from a commercial FEM package as the contact stress distribution on the die-workpiece interface and as temperature distributions in the die. This data can be processed as load input data for a finite element die-stress analysis. Process simulation and stress analysis are thus combined during the design and a data exchange program has been developed that enables optimal design of the dies taking into account the elastic deflections generated in shrink fitting the die inserts and that caused by the stresses generated in the process. The stress analysis of the dies is used to determine the stress conditions on the ceramic insert by considering contact and interference effects under both mechanical and thermal loads.

Performance of Hydrostatic/hybrid Journal Symmetric/asymmetric Bearings using Slot-entry Restrictor Under Couple Stress Lubricants

  • Ram, Nathi;Yadav, Saurabh Kumar;Sharma, Satish C.
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.187-201
    • /
    • 2017
  • This paper presents the impact of couple stress lubricant on performance of slot-entry hydrostatic/hybrid journal symmetric/asymmetric bearings. Reynolds Equation using Finite Element Technique has been solved for the flow of couple stress and Newtonian lubricants in bearings. The results have been computed for concentric design pressure ratio(${\beta}^{\ast}=0.5$), slot width ratio (SWR = 0.25) and chosen parameters of couple stress lubricant ${\bar{l}}=5$, 10, 15. It is observed that numerically simulated outcomes for slot-entry journal bearings, considering the influence of couple stress lubricant indicate a substantial improvement in the performance of the bearing.

An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials (이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.