• Title/Summary/Keyword: Tearing Load

Search Result 29, Processing Time 0.027 seconds

Traring instability of crack based on J-integral (J-적분을 이용한 균열 찢어짐 불안정성에 관한 연구)

  • Lee, Hong-Seo;Kim, Hui-Song
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.78-89
    • /
    • 1989
  • Applicability of tearing modulus based on J-integral proposed by Paris et al is investigated using compact tension specimens of strutural alloy steel (SCM4). Both general fracture test and instability fracture test are performed. The applied tearing modulus, ( $T_{j}$)app estimated from the real load vs. crack growth curve measured from experiments are compared with that estimated from the limit load vs. crack growth curve. The results are : (1) the $T_{j}$parameter could be applied to predict crack growth instability : (2) The use of ( $T_{j}$)app estimated from the load vs. crack growth curve, proposed in this study could be well predicted crack growth instability instead of that estimated form the limit load vs. crack growth curve.e.

  • PDF

A complete integrity assessment of welded connections under high and low cycle fatigue followed by fracture failure

  • Feng, Liuyang;Liu, Tianyao;Qian, Xudong;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.465-481
    • /
    • 2022
  • This paper presents a comprehensive integrity assessment of welded structural components, including uniform high- and low-cycle fatigue assessment of welded plate joints and fatigue-induced fracture assessment of welded plate joints. This study reports a series of fatigue and fracture tests of welded plate joints under three-point bending. To unify the assessment protocol for high- and low-cycle fatigue of welded plate joints, this study develops a numerical damage assessment framework for both high- and low-cycle fatigue. The calibrated damage material parameters are validated through the smooth coupon specimens. The proposed damage-based fatigue assessment approach describes, with reasonable accuracy, the total fatigue life of welded plate joints under high- and low-cycle fatigue actions. Subsequently, the study performs a tearing assessment on the ductile crack extension of the fatigue-induced crack. The tearing assessment diagram derives from the load-deformation curve of a single-edge notched bend, SE(B) specimen and successfully predicts the load-crack extension relation for the reported welded plate joints during the stable tearing process.

Crack Growth Instability for Ductile Material Using the Compact Tension Specimen (컴팩트 인장 시편을 이용한 연성 재료의 불안정 균열 성장에 관한 연구)

  • 이홍서;김희송
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.928-937
    • /
    • 1989
  • Applicability of $T_{\delta}$ proposed by Shin et al as an instability parameter for ductile material is investigated, Both general fracture test and instability fracture test are performed using compact tension specimens of structural alloy steel(SCM4), The values of ( $T_{\delta}$)$_{app}$(applied tearing modules) estimated from the real load vs. crack growth curve measured from experiments are compared with those estimated from the limit load vs. crack growth curve. The results are:(1) the $T_{\delta}$ parameter may be used as a crack instability parameter:(2) the use of ( $T_{\delta}$)$_{app}$ estimated from the load-crack growth curve, proposed in this study is reasonably justified.ified.d.

Adhesive Fracture Characteristic of DCB Specimen due to Single and Heterogeneous Materials under Tearing Load (찢김 하중에서 단일 재료 및 이종 접합 재료에 따른 이중외팔보 시험편의 접착제 파손 특성)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.127-134
    • /
    • 2021
  • In this study, the adhesive fracturing characteristics of a DCB specimen due to single and heterogeneous bonding materials under tearing load was investigated. The experiments were conducted to examine the fracturing properties of the adhesive DCB specimen. As an experimental condition, a forced displacement of 3mm/min was applied to one side while the other side was fixed. As a result of the experiment, it was found that the AL6061-T6 material was superior to the CFRP material in terms of maximum stress, specific strength, and energy release rate when compared to the adhesive fracturing property of a single material. We tested CFRP-AL, a heterogeneous bonding material, and compared its experimental results to the results from the single materials. Based on these results, CFRP-AL with a heterogeneous bonding material was observed to have the superior structural safety compared to single materials for the mode III fracture type.

Evaluation of J-R Curve and Tmat of SA 508C-3 Steel at Elevated Temperature (SA 508C-3강의 고온에서 J-R Curve 및 Tmat의 평가)

  • Lim, Man-Bae;Cha, Gee-Jun
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.3 s.29
    • /
    • pp.60-67
    • /
    • 1998
  • In this study, the J-Resistance Curve and material tearing modulus of SA508-C3 steel, which is one of the used nuclear pressure vessel steel, are measured ar room temperature, $200^{circ}C$ and $300^{circ}C$ according to load ratio analysis and ASTM E813, ASTM E1152, respectively. It is observed that J-R curve and Tmat value decrease as the temperature level increase. Applicability of $T_j$ proposed by Paris et al as instability parameter for ductile material is investigated. It is concluded that results are the $T_j$ parameter may be used as a crack instability parameter.

  • PDF

A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel (압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구)

  • 임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

Cyling Load Test of Architectural Glass Fiber Membrane (건축용 유리섬유 막재의 반복하중 시험)

  • Park, Kang-Geun;Yoon, Sung-Kee;Lee, Jang-Bok;Jun, Woo-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.31-36
    • /
    • 2008
  • Architectural membrane are now used in the roof of large span structures throughout the world with the merits of free shape and lightness. Some membrane have some problems of structural capacity by the wind or snow load conditions, large span structures was shown to the tearing of the membrane. This paper is the experimental test on the stress strain curve of cycling load for the glass fiber membrane. In the result of stress strain relationship curve by the cycling load, glass fiber membrane was reduced the tensile strength, the polyester membrane was shown to occur the increase of displacement without load reduction in each load step.

  • PDF

平面應力 破壞靭性値 擧動에 관한 硏究

  • 송삼홍;고성위;정규동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.376-385
    • /
    • 1987
  • In this study, the plane stress fracture toughness and Tearing modulus are investigated for various crack ratios using the J integral. To evaluate the J integral and Tearing modulus, both experiments and estimation are used. The thickness of the low carbon steel specimens that is used in the experiments is 3mm. The type of specimen that is considered in the study is center-cracked-tension one. The measurements of crack length are performed by unloading compliance method. In the estimation of crack parameters such as the J integral and load line displacement, the Ramberg and Osgood stress strain law is assumed. Then simple formulas are given for estimating the crack parameters from contained yielding to fully plastic solutions. Obtained results are as follows; (1) When the crack ratio is in the range of 0.500 - 0.701, the plane stress fracture toughness is almost constant regardless of crack ratios. (2) The fracture toughness (J$\_$c/) and Tearing modulus (T) obtained are J$\_$c/=28.51kgf/mm, T=677.7 for base metal, J$\_$c/=31.85kgf/mm, T=742.0 for annealed metal. (3) Simpson's and McCabe's formulas which consider crack growth in estimating J integral are shown more conservative J and lower T than Rice's and Sumpter's. (4) Comparison of the prediction with the actual experimental measurements by Simpson's formula shows good agreement.

Crack Stability Evaluation of Nuclear Main Stream Pipe Considering Load Reduction Effect (하중감소효과를 고려한 원자력 주증기 배관의 균열 안정성 평가)

  • Koh, Bong-Hwan;Kim, Yeong-Jin;Seok, Chang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1843-1853
    • /
    • 1996
  • The objective of this paper is to evaluate the crack stability of the nuclear main stresm pipes, considering the load reduction effect due to the presence of circumferential throuth-wall crack. Also, the optimization techniques are adoped tosimulate the crack effect on the elbow component of the piuping system. By using a general beam elemetn which contains a discontinuous cross-section, the piping analysis is accomplished to acquire the reduced load. Considering this reduced load, it is feasible for the LBB application in nuclear main stresm pipe. Also, by combining an optimization program and a genaral finite element analysis program, the appropriate dimensions of the simplified beam elemtn which represents the effect of crack in elbow could be successfully determined.