• Title/Summary/Keyword: Teaming Operation

Search Result 28, Processing Time 0.025 seconds

Conceptual Study on Coaxial Rotorcraft UAV for teaming operation with UGV (무인지상차량과의 합동운용을 위한 동축반전 회전익형 무인항공기 개념연구)

  • Byun, Young-Seop;Song, Jun-Beom;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.458-465
    • /
    • 2011
  • UAV-UGV teaming concept has been proposed that can compensate for weak points of each platform by providing carrying, launching, recovery and recharging capability for the VTOL-UAV through the host UGV. The teaming concept can expand the observation envelop of the UGV and extend the operational capability of the UAV through mechanical combination of each system. The spherical-shaped coaxial rotorcraft UAV is suggested to provide flexible and precise interface between two systems. Hybrid navigation solution that included vision-based target tracking method for precision landing is investigated and its experimental study is performed. Feasibility study on length-variable rotor to provide the compact configuration of the loaded rotorcraft platform is also described.

Maximum Torque Control of IPMSM with Adaptive Learning Fuzzy-Neural Network (적응학습 퍼지-신경회로망에 의한 IPMSM의 최대토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.309-314
    • /
    • 2006
  • Interior permanent magnet synchronous motor(IPMSM) has become a popular choice in electric vehicle applications, due to their excellent power to weight ratio. This paper proposes maximum torque control of IPMSM drive using adaptive learning fuzzy neural network and artificial neural network. This control method is applicable over the entire speed range which considered the limits of the inverter's current md voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using adaptive teaming fuzzy neural network and artificial neural network. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper proposes speed control of IPMSM using adaptive teaming fuzzy neural network and estimation of speed using artificial neural network. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The proposed control algorithm is applied to IPMSM drive system controlled adaptive teaming fuzzy neural network and artificial neural network, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper proposes the analysis results to verify the effectiveness of the adaptive teaming fuzzy neural network and artificial neural network.

  • PDF

Implementation and Verification of System Integration Laboratory for Multiple Unmanned Aerial Vehicle Operation and Control Technology using Manned Rotorcraft (유인회전익기에 의한 다수 무인기 운용통제기술의 통합검증환경 구현 및 검증)

  • Hyoung Jin Kim;Sang Eun Kwon;Young Wo Jo;Bong Gyu Kim;Eun Kyoung Go
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.133-143
    • /
    • 2023
  • This paper describes the system integration laboratory's requirement analysis, implementation, and verification for multiple-scenario unmanned aerial vehicle operation and control technology using a manned rotorcraft for Manned-Unmanned Teaming. System integration laboratory consists of manned rotorcraft flight simulation, unmanned aerial vehicle flight and mission equipment simulation, ground control system simulation for unmanned aerial vehicle control and change in the control authority between the ground control system and manned rotorcraft, and operation and control system for mission plan's writing and transmission. Each implemented simulation verified the requirements through software and hardware integration test.

Development and Application of Remote Airborne Control Simulator for Experimentation of Manned-Unmanned Teaming of Fixed Wing UAV (고정익 유/무인기의 협업 모의를 위한 원격공중통제 시뮬레이터 개발 및 활용방안)

  • Choi, Young Mee
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.56-62
    • /
    • 2021
  • The purpose of this study was to address a Remote Airborne Control Simulator that could simulate manned-unmanned teaming (MUM-T mission) for fixed wing UAV. With rapid technological development of unmanned aerial vehicle (UAV), the mission capability of UAV has tremendously grown. The role of UAV extends from simple reconnaissance to highly automated wingman. Accordingly, the requirement of UAV ground simulator should be modified as well to meet function requirements for simulating a MUM-T mission. A developed remote airborne control simulator was developed for conducting fixed wing UAV MUM-T operation simulations on the ground. The newest MUM-T examples, usage, and application of the developed remote airborne control simulator for MUM-T simulation are also presented in this study.

The Development of The Simulation Environment for Operating a Simultaneous Man/Unmanned Aerial Vehicle Teaming (유/무인 항공기 복합운용체계 검증을 위한 시뮬레이션 환경 구축)

  • Gang, Byeong Gyu;Park, Minsu;Choi, Eunju
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.36-42
    • /
    • 2019
  • This research illustrates how the simulation environment for operating the simultaneous man/unmanned aerial vehicle teaming is constructed. X-Plane program, HILS for the ducted fan aircraft (unmanned) and CTLS (manned aircraft) with communication devices are interfaced to simulate the basic co-operational flight. The X-plane and HILS can allow operators to experience the maned and unmanned aircraft operation in the airspace on the ground in turn they can perform various simulated missions in advance before the actual flight. For the test purpose, the data link between man/unmanned aircraft and ground control station is examined using C Band and UHF radio channels by the manned aircraft.

Simulation for SEAD Mission with MUM-T (SEAD 임무를 위한 유·무인 협업 모의)

  • Sungbeom Jo;Young Mee Choi;Jihyun Oh;Hyunsam Myung;Heungsik Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.409-421
    • /
    • 2023
  • In the air power, UAVs have played a large and diversified role in performing missions from simple to high-level complex ones. In particular, the suppression of enemy air defenses(SEAD) is very dangerous for a pilot so it is expected that the manned-unmanned teaming(MUM-T) system with tailless stealthy unmanned aerial vehicle(UAV) will greatly enhance effectiveness of the mission while ensuring the pilot safe. This paper describes simulation studies of remote airborne control(RAC) environment for performing the SEAD mission by MUM-T, by which the air force pilot remotely controls tailless UAVs individually or small UAVs in swarm. Through this simulation, air force pilot can derive the concept of MUM-T mission operation with various UAVs in the future, and it can be used to upgrade the MUM-T system by verifying the effectiveness of the mission.

Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat (AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로)

  • Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

A Study on the Wiring Control Method of Hand & Auto Operation of an Easy Elevator (간이 승강기 수·자동 배선제어방식에 관한 연구)

  • 위성동;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.351-357
    • /
    • 2003
  • An easy learning elevator originated is opened to compare the existed teaming equipment, and it had a high studied efficiency that the sequence control circuit can open and close with the wire. The structure of equipment to be controlled from the first floor to the fifth floors is demostrated by the constructive apparatus with the lamps to express the function of the open-close of the door according to the cage moving with a mechanical actuation of the forward reverse breaker and the motor of load, and the mechanical actuation of hand-operation control components of push-button S/W and L/S and relay etc. These components let connect each other in order to control of the elevator function with the auto program and the designed sequence control circuit. Consequently the cage could go and come till 1∼5 steps with an auto program of the elevator and the sequence control circuit. The sequence control circuit is controlled by the step of forward and reverse to follow as that the sensor function of L/S1 ∼ L/S5 let posit with the control switchs of S/W1 ∼ S/W5 of PLC testing panel and switchs of S/W1 ∼ S/W5 installed on the transparent acryl plate of the frame. In here, improved apparatus is the hand-auto operation combined learning equipment to study the principle and technique of the originate sequence control circuit and the auto program of PLC.

A New Correction Algorithm of Servo Track Writing Error in High-Density Disk Drives (고밀도 디스크 드라이브의 서보트랙 기록오차 보정 알고리즘)

  • 강창익;김창환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.4
    • /
    • pp.284-295
    • /
    • 2003
  • The servo tracks of disk drives are constructed at the time of manufacture with the equipment of servo track writer. Because of the imperfection of servo track writer, disk vibrations and head fluctuations during servo track writing process, the constructed servo tracks might deviate from perfect circles and take eccentric shapes. The servo track writing error should be corrected because it might cause interference with adjacent tracks and irrecoverable operation error of disk drives. The servo track writing error is repeated every disk rotation and so is periodic time function. In this paper, we propose a new correction algorithm of servo track writing error based on iterative teaming approach. Our correction algorithm can learn iteratively the servo track writing error as accurately as is desired. Furthermore, our algorithm is robust to system model errors, is computationally simple, and has fast convergence rate. In order to demonstrate the generality and practical use of our work, we present the convergence analysis of our correction algorithm and some simulation results.

A study on teaching unit material for teaching and learning of sequences - polygonal numbers and pyramidal numbers (수열의 교수.학습을 위한 교수단원 소재 연구 - 다각수와 각뿔수)

  • 박교식
    • School Mathematics
    • /
    • v.4 no.3
    • /
    • pp.361-373
    • /
    • 2002
  • In this paper, a series of tasks related on polygonal numbers and pyramidal numbers are suggested for using them as teaching unit materials for teaching and learning of sequences in junior high school mathematics. Especially, finding n-th term in those seque-nces, relations among polygonal numbers, and relations among Pyramidal numbers are focused on. A series of tasks related on polygonal numbers and pyramidal numbers have three math-eucational values. First, they have a value as natural materials for teaching and teaming of finding nth term of original sequences using pro-gression of differences. Second, they have a value as materials for teaching and learning of mathematical thinking such as general-ization, analogy, etc. Third, they have a value as materials for teaching and learning of algebraic operation, proof, and connecting mathematical knowledges.

  • PDF