• 제목/요약/키워드: Taylor effect

Search Result 169, Processing Time 0.023 seconds

The Effect of Electrode Size during tDCS on Hand Function (경두개직류자극 시 전극 크기가 손기능에 미치는 영향)

  • Lee, Hye-Jin;Park, Soo-Ji;Kwon, Hye-Min;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.10 no.2
    • /
    • pp.37-42
    • /
    • 2012
  • Purpose : This study is to examine the effect of electrode size during transcranial direct current stimulation on hand function. Methods : By randomly assigning 26 right hand dominant subjects to two groups (I: carbon rubber electrode / II: disposable circular self-adhesive electrodes) with 13 subjects in each group depending on the electrode size, a positive electrodeof transcranial direct current stimulation was placed on the primary motor area (C4) and a negative electrode was placed on the left primary motor area (C3) and the stimulation was applied for 20 minutes.Hand function assessment before and after transcranial direct current stimulation were measured with JTT (Jebsen-Taylor hand function test). Results : According to hand function assessment by JTT, there were no interactions on both hands, and statistically significant differences according to time appeared in the main effect test. Conclusion : Regardless of the electrode size, it appears that transcranial direct current stimulation on the primary motor area activated hand function affected.

Effects of Corrugation Angle on Local Heat/Mass Transfer in Wavy Duct of Heat Exchanger (열교환기 내부 유로의 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, San-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.789-799
    • /
    • 2004
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewalls are determined by using a naphthalene sublimation technique. The corrugation angles(${\alpha}$) of the wavy ducts are 145$^{\circ}$, 130$^{\circ}$, 115$^{\circ}$ and 100$^{\circ}$. And the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. The results show that at the low Re(Re $\leq$1000), the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, high heat/mass transfer regions are formed on both pressure-side and suction-side walls. At the high Re(Re $\geq$ 1000), these secondary flows are vanished with helping flow transition to turbulent flow and the regions which show high heat/mass coefficients by flow reattachment are formed on suction side. As corrugation angle decreases, the local peak Sh induced by Taylor-Gortler vortices increase at Re $\leq$1000. At high Re(Re $\geq$ 1000), by the existence of different kind of secondary flows called Dean vortices, non-uniform Sh distribution appears along spanwise direction at the narrow corrugation angle (${\alpha}$=100$^{\circ}$). Average Sh also increase by the enhanced effect of secondary vortices and flow reattachment. More pumping power (pressure loss) is required with the smaller corrugation angle due to the enhancement of flow instability.

Numerical Study on Taylor Bubble Rising in Pipes

  • Shin, Seung Chul;Lee, Gang Nam;Jung, Kwang Hyo;Park, Hyun Jung;Park, Il Ryong;Suh, Sung-bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.38-49
    • /
    • 2021
  • Slug flow is the most common multi-phase flow encountered in oil and gas industry. In this study, the hydrodynamic features of flow in pipes investigated numerically using computational fluid dynamic (CFD) simulations for the effect of slug flow on the vertical and bent pipeline. The compressible Reynold averaged Navier-Stokes (RANS) equation was used as the governing equation, with the volume of fluid (VOF) method to capture the outline of the bubble in a pipeline. The simulations were tested for the grid and time step convergence, and validated with the experimental and theoretical results for the main hydrodynamic characteristics of the Taylor bubble, i.e., bubble shape, terminal velocity of bubble, and the liquid film velocity. The slug flow was simulated with various air and water injection velocities in the pipeline. The simulations revealed the effect of slug flow as the pressure occurring in the wall of the pipeline. The peak pressure and pressure oscillations were observed, and those magnitudes and trends were compared with the change in air and water injection velocities. The mechanism of the peak pressures was studied in relation with the change in bubble length, and the maximum peak pressures were investigated for the different positions and velocities of the air and water in the pipeline. The pressure oscillations were investigated in comparison with the bubble length in the pipe and the oscillation was provided with the application of damping. The pressures were compared with the case of a bent pipe, and a 1.5 times higher pressures was observed due to the compression of the bubbles at the corner of the bent. These findings can be used as a basic data for further studies and designs on pipeline systems with multi-phase flow.

A Study on the Analysis of Multi-let Spread Mooring Systems (다점지지 계류시스템의 정적해석에 대한 연구)

  • Sin, Hyeon-Gyeong;Kim, Deok-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 1995
  • A multi-leg spread mooring system for floating offshore structures is important, but the multi-leg static analysis is complicated due to the nonlinear behavior of each line and the effect of current which affects each line differently. The pretensioned position of the multi-leg mooring system obtained from the static equilibrium condition changes into a different position due to external loads and current. In this paper, the new position and the static tension at each line are caculated. The relation between the initial static equilibrium position and the new position due to the external loads is expressed in terms of the Taylor's series expansion. The Runge-Kutta $4^{th}$ method is employed in analyzing the 3-dimensional static cable nonlinear equations.

  • PDF

Effect of viscous interfaces on bending of orthotropic rectangular laminate (직교 이방성 적층판의 굽힘에 대한 점성 경계면의 영향)

  • Kim, Geun-Woo;Lee, Kang-Yong;Chen, W.Q.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.180-185
    • /
    • 2004
  • This paper investigates asimply supported orthotropic rectangular laminate with viscous interfaces subjected to bending. Additional mathematical difficulty is involved due to the presence of viscous interfaces because the behavior of the laminate depends on time. A step-by-step state-space approach is suggested, which is directly based on the threedimensional theory of elasticity. In particular, Taylor's expansion theorem is employed to model the variations of field variables with time. The proposed method is suitable for analyzing laminated plate of arbitrary thickness. Numerical calculations are performed and it is shown that the viscous interfaces have a significant fluence on the response.

  • PDF

Dynamic responses of a riser under combined excitation of internal waves and background currents

  • Lou, Min;Yu, Chenglong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.685-699
    • /
    • 2014
  • In this study, the dynamic responses of a riser under the combined excitation of internal waves and background currents are studied. A modified Taylor-Goldstein equation is used to calculate the internal waves vertical structures when background currents exist. By imposing rigid-lid boundary condition, the equation is solved by Thompson-Haskell method. Based on the principle of virtual work, a nonlinear differential equation for riser motions is established combined with the modified Morison formula. Using Newmark-${\beta}$ method, the motion equation is solved in time domain. It is observed that the internal waves without currents exhibit dominated effect on dynamic response of a riser in the first two modes. With the effects of the background currents, the motion displacements of the riser will increase significantly in both cases that wave goes along and against the currents. This phenomenon is most obviously observed at the motions in the first mode.

Effect of Taylor Vortex on Cake Formation in Membrane Filtration (막여과에서 테일러 와류가 케이크 형성에 미치는 영향)

  • 박원철;김현우;최창균;박진용;김재진
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.04b
    • /
    • pp.52-55
    • /
    • 1997
  • 여과가 진행됨에 따라 막의 표면에서 발생하여 여과선속을 저하시키는 케이크층의 형성은 막을 이용한 고-액 분리공정에서 발생하는 가장 큰 문제점의 하나로서 이는 막 분리공정의 경제성을 좌우하는 중요한 인자가 된다. 이러한 문제점을 극복하기 위하여 유체와 막 사이의 상대속도를 증가시켜 여과속도를 향상시키는 십자흐름 여과, 즉 CFF(crossflow filtration)에 대한 연구가 활발히 진행되어 왔다. 그러나 이러한 심자흐름 여과에서도 막과 유체 사이의 상대속도의 증가에 한계가 있고 또한, 막의 기공보다 작은 입자가 막의 기공 내에 침투하여 막을 오염시키는 현상을 예측하기 어렵기 때문에 여과기의 설계에 있어서 많은 문제점이 발생하고 있다. 이에 오염된 막을 재생시키기 위하여 기계적.화학적인 여러 가지 방법들이 개발되고 여과선속을 향상시키는 방법이 꾸준히 연구되어 분리막 기술의 경제성을 향상시켜 왔다. 본 연구에서는 매우 안정된 유동의 하나로서 막 표면의 전단력을 향상시키는 데에 효과가 있다고 알려진 Taylor와류를 응용한 회전막 여과기를 사용하여 여러 가지 크기의 입자에 대한 여과실험을 수행함으로써 이러한 유동이 케이크의 형성에 미치는 영향을 살펴보았다. 또한 여과선속에 영향을 미치는 여러 매개인자를 알아보고 실험결과를 간단한 모델식에 적용해 봄으로써 막의 저항을 예측할 수 있는 모델식으로의 개선 방향을 제시하고자 한다.

  • PDF

On cutting characteristics of glass fiber reinforced plastic (유리섬유강화수지의 절삭특성)

  • Choi, Soo-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.78-83
    • /
    • 1988
  • The purpose of this study is to understand the cutting characteristics of glass-fiber rein- forced plastic (GFRP) by investigating the variation of cutting force and surface roughness, depending on the amount fo flank wear and cutting conditions. And a Taylor type tool life equation is derived using the regression analysis. The present study reveals that, 1. Taylor's eqquation can be applicable to GFRP nd the constants n (0.170-0.175) and C (53.7- 64.4) are smaller than those in cutting of steel. 2. Principal cutting force increases sharply with the increase of feed rate, but feed force and radial force are almost constant. This result is quite different from that of metal cutting. 3. Cutting forces ($F_P, \;F_Q, \;F_R$) increase with the increase of flank wear, and feed force especially increases sharply with the increase of flank wear. 4. Surface roughness changes very much along the circumference of the workpiece and the amount of flank wear has almost no effect on surface roughness.

  • PDF

Does Inward Foreign Direct Investments Affect Export Performance of Micro Small and Medium Enterprises in India? An Empirical Analysis

  • SINGHA, Seema;KUMAR, Brajesh;CHOUDHURY, Soma Roy Dey
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.9
    • /
    • pp.143-156
    • /
    • 2022
  • This article examines the effect of inward foreign direct investments (FDI) on the export performance of micro, small & medium enterprises (MSMEs) in India, and investigates the spillover impact and absorption capacity of the MSMEs sector. For the first time, the researchers applied the intersectoral linkage approach to investigate the matter and used a panel dataset between 2006 and 2017. The coefficients of forward and backward linkages are estimated by using the Rasmussen method, the study employs a basic linear panel data model, followed by various diagnostic tests to identify the problem of heteroscedasticity, autocorrelation / serial correlation, cross-sectional dependencies, multicollinearity, time-individual specific tests, and unobserved effects. The PCSE model was applied for robust standard error and the Hausman-Taylor IV model to check the robustness of the result generated in the linear panel data model. Despite the high prevalence of forward and backward intersectoral connections and the Lack of absorption capacity of local firms, the results show that FDI has little of an impact on the export performance of micro, small, and medium-sized businesses in India. This study adds to the existing literature on determining local firms' spillover effect and absorption capacity in response to inward FDI.