• Title/Summary/Keyword: Taxus chinensis

Search Result 44, Processing Time 0.03 seconds

Production and Purification of tazane Derivatives from the Plane Cell Cultures of Taxus Chinensis in Large-scale Process (식물세포 Taxus chinensis 의 대량 배양액으로부터의 Taxane 유도체 생산 및 정체)

  • 김진현
    • KSBB Journal
    • /
    • v.15 no.4
    • /
    • pp.398-401
    • /
    • 2000
  • Taxiods inclusive paclitaxel were produced isolated and purified from plant cell cultures of Taxus chinensis in large-scale process. their structures were elucidated by spectroscopic analyses. These compounds were exactly identical as those in previous studies from the other biomasses of Taxus chinensis and also other species. Also the concentrations of these compounds were compared with the concentration of the paclitaxel in various batches of plant cell cultures. As paclitaxel concentration increased at the end of cell cultures. the concentrations of the other paclitaxel derivatives decreased. The profile of these taxoids production can provide information for better understanding of structure-activity relationships and biosynthesis Importantly it can be utilized as an useful parameter for the quality control of paclitaxel production.

  • PDF

Isolation and Identification of 13-Deacetyl-taxchinin I, a New Taxoid from Plant Cell Cultures of Taxus chinensis (식물세포 Taxus chinensis 배양으로부터 신물질 13-Deacetyl-taxchinin I의 분리 및 동정)

  • 김진현;기은숙;유시용;최형균;홍승서;이현수
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.560-565
    • /
    • 2000
  • 13-Deacetyl-taxchinin I, a taxoid having a rearranged 11(15\longrightarrow1)-abeo-taxane skeleton, has been isolated and identified from plant cell cultures of Taxus chinensis. The compound has not previously been encountered in nature. Its structure was elucidated by 1-and 2D NMR techniques including H-H COSY, HMQC, and HMBC experiments. This taxoid also provides information for better understanding of structure-activity relationships and biosynthesis, as well as improving the quality control of paclitaxel production.

  • PDF

Localization of Paclitaxel in Suspension Culture of Taxus chinensis

  • Choi, Hyung-Kyoon;Kim, Sang-Ic;Song, Jai-Young;Son;Hong, Seung-Suh;Durzan, Don-J.;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.458-462
    • /
    • 2001
  • The localization of paclitaxel was investigated in suspension culture cells of Taxus chinensis. Over 93% of the cell-associated paclitaxel were detected throughout the entire culture period. Intracellular localization of paclitaxel over the culture time was analyzed further by cell fractionation for days 21 and 42. Paclitaxel contents in intracellular organelles were decreased at day 42, while the content in the cell wall fraction was increased at day 42 compared to the value for day 21. The localization of paclitaxel in the cell wall was confirmed by using the immunocytochemical method with the aid of a confocal laser scanning microscope.

  • PDF

Monitoring of FCW/DCW ratio, Production of Protein and Peroxidase Activity During Suspension Culture of Taxus chinesis (주목 세포 현탁배양 중, FCW/DCW ratio, 단백질 생산 및 peroxidase활성 조사)

  • 최형균;윤정환;김상익;송재영;김진현;최호준;홍승서
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.525-528
    • /
    • 2000
  • Time course monitoring of FCW/DCW ratio, production of intra and extracellular protein, and peroxidase activity were performed during suspension culture of Taxus chinensis cells. The observed FCW/DCW ratio was 12 at day 14, which was the lowest value during cultivation, and the specific protein production, based on dry cell weight, was also the lowest at day 14, which showed 4.3 mg/g DCW. The pattern of POD activity was similar to that of protein production. The results in this report were obtained using actively growing cells in flasks, therefore it is possible to use those results to control the process and indicate the stresses imposed on cells during large-scale cultivation.

  • PDF

Negative Pressure Cavitation Acetone-Pentane Fractional Precipitation for the Purification of Paclitaxel from Taxus chinensis (Taxus chinensis로부터 파클리탁셀 정제를 위한 음압 캐비테이션 아세톤-펜테인 분별침전)

  • Min, Hye-Su;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.544-549
    • /
    • 2022
  • This study presents the negative pressure cavitation acetone-pentane fractional precipitation to dramatically improve the precipitation efficiency of paclitaxel from Taxus chinensis. When paclitaxel was precipitated under a negative pressure of -200 mmHg, most paclitaxel (>99.9%) could be recovered in a short precipitation time (5 min). The precipitation rate constant increased by 1.512~5.073 times (at -50 mmHg to -200 mmHg) compared to the control. The activation energy decreased by -3,737~-6,536 J/mol due to negative pressure, which increased the precipitation rate. With the introduction of negative pressure, the precipitate size decreased by 5.3 times, and the diffusion coefficient of paclitaxel increased by 7.0 times.

Identification and Quantification of Tar Compounds in Plant Cell Cultures of Taxus chinensis (주목 식물세포(Taxus chinensis) 배양 유래 타르 성분 동정 및 정량)

  • Kim, Gun-Joong;Park, Gyu-Yeon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.272-277
    • /
    • 2013
  • In this study, the tar compounds derived from the plant cell cultures of Taxus chinensis were first identified and then quantified via gas chromatography/mass spectrometry (GC/MS) and gas chromatography (GC). 2-Picoline, 2,5-xylenol, acenaphthene, 1-methylnaphthalene and o-xylene were found to be the major tar compounds by biomass. These compounds were identified and confirmed by comparing their retention times with those of authentic compounds. Each compound also spiked with the pure standard. The contents of 2-picoline, 2,5-xylenol, acenaphthene, 1-methylnaphthalene, and o-xylene in biomass were 0.2512, 0.1586, 0.1240, 0.0942 and 0.0525 wt%, respectively. Liquid-liquid extraction and adsorbent treatment were able to remove 42% and 94% of the tars from biomass, respectivly. After hexane precipitation, all of the tars were perfectly removed.

Ultrasound-Assisted Micellar Extraction for Paclitaxel Purification from Taxus chinensis (Taxus chinensis 유래 파클리탁셀 정제를 위한 초음파를 이용한 마이셀 추출)

  • Park, Ji-Min;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2021
  • In this study, an ultrasound-assisted micellar extraction process was developed to efficiently purify the anticancer substance paclitaxel from the plant cell Taxus chinensis. The problem of many extraction steps and long phase separation time in the traditional micellar process could be dramatically improved. The highest paclitaxel yield (~96%, extracted twice) was obtained at 180 W of ultrasonic power and 1.5 h of ultrasonic irradiation time, which was 24.7% higher than that of the traditional method. In addition, the partition coefficient (K) showed a maximum value (24.0) at 180 W of ultrasonic power and 1.5 h of irradiation time. There was no significant difference in the purity of paclitaxel, and the purity of initial paclitaxel (6.81%) increased to 22.0% after purification. Compared to the traditional method, the phase separation time of the back extraction decreased by 40.7-56.2% (ultrasonic power 80 W), 46.3-67.6% (ultrasonic power 180 W), and 51.9-67.6% (ultrasonic power 250 W), respectively. The phase separation time decreased as the ultrasonic power (80-250 W) and irradiation time (0.5-2.5 h) increased.

Isolation and Identification of Nonpolar Taxane Derivatives from the Plant Cell Culture of Taxus chinensis

  • Gi, Un-Sook;Min, Bumchan;Hong, Seung-Suh;Lee, Hyun-Soo;Kim, Jin-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.176-179
    • /
    • 2000
  • Nonpolar taxoides extracted from a large-scale cell culture of Taxus chinensis were isolated through the normal and reverse phase column chromatographies, and their compounds were identified via NMR spectroscopy. The complete separation method was systematically established and described. In dichloromethane, dissolved paclitaxel and other taxoids with hexane were precipitated during the purification of paclitaxel from the plant cell culture of T. chinensis through a large-scale process while the relatively nonpolar taxane derivatives remained dissolved in the hexane phase. 13-Deoxy baccatin III (I), baccatin VI (II), taxchinin I (III), $2{\alpha}$, $5{\alpha}$, $10{\beta}$, $14{\beta}$-tetraacetoxy-4(20), 11-taxadiene(IV), 1-deoxy baccatinVI(V), and taxayuntin C (VI) were isolated through column chromatography and identified via NMR spectroscopy. Compounds I and IV were found to the major components, aside from paclitaxel, in the plant cell culture of T. chinensis. The concentrations of I and IV were compared with the that concentration of the paclitaxel in each of plant cell culture. The possible applications of compounds I, II, IV, and V were discussed.

  • PDF

Characteristics of Microwave-Assisted Drying of Plant Cells of Taxus chinensis for Moisture Removal (수분 제거를 위한 식물세포 Taxus chinensis의 마이크로웨이브를 이용한 건조 특성)

  • Nam, Hyeon-Woo;Kim, Jin-Hyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.208-214
    • /
    • 2020
  • In this study, the characteristics and mechanism of microwave-assisted drying were investigated to improve the efficiency of the storage and extraction of biomass through the removal of moisture from plant cell Taxus chinensis. The efficiency of microwave-assisted drying increased with increasing microwave power. When the experimental data were fitted to typical drying kinetic models, the page and modified Page models were the most appropriate. The microwave-assisted drying was determined to be a spontaneous endothermic process, and randomness increased during the drying process. The effective diffusion coefficient (3.445 × 10-9~7.163 × 10-7 ㎡/s) and mass transfer coefficient (3.1529 × 10-5~1.2895 × 10-2 m/s) increased with increasing microwave power. The small Biot number (0.3890~0.7198) indicated that the mass transfer process was externally controlled.

Development of High Performance Liquid Chromatography for Paclitaxel Purification from Plant Cell Cultures

  • Kim, Jin-Hyun;Choi, Hyung-Kyoon;Hong, Seung-Suh;Lee, Hyun-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.204-210
    • /
    • 2001
  • Paclitaxel can be produced in high yield and with a high degree of purify from plant cell cultures of Taxus chinensis. The complete purification method was systematically established and described. This method was an efficient procedure for the purification of paclitaxel from crude paclitaxel, consisting or reverse-phase chromatography, followed by a normal-phase chromatography. The two-stage HPLC purification scheme serves as an effective and economical approach for resolving paclitaxel from complex mixtures of taxoids, with high purify (>99%) and low impurities (<0.1%). The process is readily scalable to a pilot plant and eventually to a production environment where multikilogram quantities of material are expected to be produced. The process has been optimized to minimize solvent usage, complexity, and operating costs.

  • PDF