• Title/Summary/Keyword: Tau imaging

Search Result 33, Processing Time 0.028 seconds

SUBARU EXPLORATIONS OF EXO-SOLAR PLANETS AND DISKS

  • TAMURA MOTOHIDE
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.319-324
    • /
    • 2005
  • To date, more than 150 exo-solar planets have been observed by various methods such as spectroscopic, photometric, astrometric, gravitational lensing, pulsar timing methods. However, all these are indirect methods; they do not directly image the planets. Only free-floating planets or their 'ana-log' have been directly detected so far. Thus the next milestone is the direct imaging of any kinds of planetary mass objects orbiting around normal (young) stars, which might have been associated with protoplanetary disks, the sites of planet formation. I will describe some SUBARU efforts to detect self-luminous young giant planets as companions as well as direct imaging of the protoplanetary disks of ${\~}$100 AU size. The results of near-infrared coronagraphic imaging with adaptive optics are briefly presented on AB Aur, HD 142527, T Tau, and DH Tau. Our results demonstrate the importance of high-resolution (${\~}$0.1 arcsec) direct imaging over indirect observations such as modeling based on spectral energy distributions. The SUBARU observations are a prelude to ALMA from the morphological point of view.

MR ANGIOGRAPHY USING THE COMPOSITE [$90^{\circ}-{\tau}-180^{\circ}-2{\tau}-180^{\circ}-{\tau}$] SEQUENCE (복합 [$90^{\circ}-{\tau}-180^{\circ}-2{\tau}-180^{\circ}-{\tau}$ 시이퀸스를 이용한 핵자기 공명 혈관 조영술)

  • Kim, J.H.;Lee, K.D.;Jeon, H.H.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1989 no.05
    • /
    • pp.35-37
    • /
    • 1989
  • A new MR angiography technique using a composite sequence for the suppression of static sample signals is proposed and verified with experiments. When the composite [$90^{\circ}-{\tau}-180^{\circ}-2{\tau}-180^{\circ}-{\tau}$] sequence is applied, the large signal from the static sample is sufficiently suppressed but the signal from fresh inflow sample of which amplitude. is observed without suppression. These properties are appropriate for angiographic applications. In this paper, a modified line scan method (Block line scan angiography) incorporated with the composite [$90^{\circ}-{\tau}-180^{\circ}-2{\tau}-180^{\circ}-{\tau}$] sequence is used to obtain flow-only images, i.e., angiograms. The block line scan method improves the resolution in the flow-direction at the expense of imaging time. With the composite sequence, there is no need for subtraction procedure as in the most conventional angiographic methods. Experimental results for a phantom and a normal volunteer with KAIS 2.0 Tesla MRI system are shown.

  • PDF

The Effects of Rotational Correlation Time of Paramagnetic Contrast Agents on Relaxation Enhancement: Partial Binding to Macromolecules (거대분자에 부분적으로 결합한 상자성 자기공명 조영제의 회전속도가 이완증강에 미치는 영향)

  • 장용민
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.2
    • /
    • pp.159-166
    • /
    • 1999
  • Purpose : To evaluate the effect of rotational correlation time (${\tau}_R$) and the possible related changes of other parameters, ${\tau}_M,{\;}{\tau}_S,{\;}and{\;}(\tau}_V$ of gadolinium (Gd) chelate on T1 relaxation enhancement in two pool model. Materials and Methods : The NMRD (Nuclear Magnetic Relaxation Dispersion) profiles were simulated from 0.02 MHz to 800 MHz proton Larmor frequency for different values of rotational correlation times based on Solomon-Bloembergen equation for inner-sphere relaxation enhancement. To include both unbound pool (pool A) and bound pool (pool B), the relaxivity was divided by contribution from unbound pool and bound pool. The rotational correlation time for pool A was fixed at the value of 0.1 ns, which is a typical value for low molecular weight complexes such as Gd-DTPA in solution and ${\tau}_R$ for pool B was changed from 0.1 ns to 20 ns to allow the slower rotation by binding to macromolecule. The fractional factor of was also adjusted from 0 to 1.0 to simulate different binding ratios to macromolecule. Since the binding of Gd-chelate to macromolecule cab alter the electronic environment of Gd ion and also the degree of bulk water access to hydration site of Gd-chelate, the effects of these parameters were also included. Results : The result shows that low field profiles, ranged from 0.02 to 40 MHz, and dominated by contribution from bound pool, which is bound to macromolecule regardless of binding ratios. In addition, as more Gd-chelate bound to macromolecule, sharp increase of relaxivity at higher field occurs. The NMRD profiles for different values of ${\tau}_S$ show the enormous increase of low field profile whereas relaxivity at high field is not affected by ${\tau}_S$. On the other hand, the change in ${\tau}$V does not affect low field profile but strongly in fluences on both inflection fie이 and the maximum relaxivity value. The results shows a fluences on both inflection field and the maximum relaxivity value. The results shows a parabolic dependence of relaxivity on ${\tau}_M$. Conclusion : Binding of Gd-chelate to a macromolecule causes slower rotational tumbling of Gd-chelate and would result in relaxation enhancement, especially in clinical imaging field. However, binding to macromolecule can change water enchange rate (${\tau}_M$) and electronic relaxation ($T_le$) vis structural deformation of electron environment and the access of bulk water to hydration site of metal-chelate. The clinical utilities of Gd-chelate bound to macromolecule are the less dose requirement, the tissue specificity, and the better perfusion and intravascular agents.

  • PDF

Review of the chemistry of first-generation Tau PET tracers

  • Farag, Ahmed Karam;Im, Changkeun;Kang, Choong Mo;Lee, Yong Jin
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.1
    • /
    • pp.27-38
    • /
    • 2020
  • Alzheimer's disease (AD) is one of the challenging conditions that have no cure, yet early diagnosis can help to control the disease. PET imaging of tau has several advantages, such as being a noninvasive, safe diagnostic technique that correlates directly with the disease progression. Many tau tracers have been reported to date; however, the chemical scaffolds of them fall in a narrow chemical window, and none was approved yet as none is entirely selective and sensitive to tau. These problems are being solved as new tracers emerge constantly. In this report, the first-generation tau tracers such as [11C]PBB3, 2-arylquinoline (THK) series, [18F]T808, and [18F]AV-1451 ([18F]T807) are reviewed from an organic and radiochemistry perspective; thus the most effective chemical approach to synthesize these tracers is discussed. This would help to design novel tracers which can meet the challenges faced by the current tracers.

Medkum TAu Inversion Recover(MTIR) Sequence for White Matter Suppression in Brain Cortical Lesions (뇌피질 질환에서 뇌백질 신호 억제를 위한 중간시간 반전회복 영상 기법)

  • 정경호;이정민;김종수
    • Investigative Magnetic Resonance Imaging
    • /
    • v.3 no.1
    • /
    • pp.60-65
    • /
    • 1999
  • Purpose : The purpose of this study was to evaluate the image quality, contrast characteristics, and possible clinical utility of Medium Tau Inversion Recovery(MTIR) sequence with white matter suppression in patients with brain cortical lesion. Materials and methods : Two normal volunteers and twenty-one patients with cortical lesion were scanned with MTIR as well as other MR imaging sequences. Gray-white matter contrast was evaluated objectively using region-of-interest calculations, including percent contrast and contrast-to-noise ratio(CNR). MTIR sequence was visually compared with other sequences in 21 patients with cortical lesion including conspicuity and detection rate. Results : MTIR sequence had the highest present contrast and CNR between the gray matter and white matter. In twenty-one cases of cortical lesion including cortical dysplasia, MTIR sequence improved delineation and conspicuity of lesion, but MTIR sequence could not detect new lesions. Conclusion : The MTIR sequence well delineated the cortical lesions, particularly in including cortical dysplasia. It may be used as an adjunctive imaging sequence in case of poor gray and white matter differentiation with conventional T1-weighted sequences.

  • PDF

Distinct sets of lysosomal genes define synucleinopathy and tauopathy

  • Kyu Won Oh;Dong-Kyu Kim;Ao-Lin Hsu;Seung-Jae Lee
    • BMB Reports
    • /
    • v.56 no.12
    • /
    • pp.657-662
    • /
    • 2023
  • Neurodegenerative diseases are characterized by distinct protein aggregates, such as those of α-synuclein and tau. Lysosomal defect is a key contributor to the accumulation and propagation of aberrant protein aggregates in these diseases. The discoveries of common proteinopathies in multiple forms of lysosomal storage diseases (LSDs) and the identification of some LSD genes as susceptible genes for those proteinopathies suggest causative links between LSDs and the proteinopathies. The present study hypothesized that defects in lysosomal genes will differentially affect the propagation of α-synuclein and tau proteins, thereby determining the progression of a specific proteinopathy. We established an imaging-based high-contents screening (HCS) system in Caenorhabditis elegans (C. elegans) model, by which the propagation of α-synuclein or tau is measured by fluorescence intensity. Using this system, we performed RNA interference (RNAi) screening to induce a wide range of lysosomal malfunction through knock down of 79 LSD genes, and to obtain the candidate genes with significant change in protein propagation. While some LSD genes commonly affected both α-synuclein and tau propagation, our study identified the distinct sets of LSD genes that differentially regulate the propagation of either α-synuclein or tau. The specificity and efficacy of these LSD genes were retained in the disease-related phenotypes, such as pharyngeal pumping behavior and life span. This study suggests that distinct lysosomal genes differentially regulate the propagation of α-synuclein and tau, and offer a steppingstone to understanding disease specificity.

Recent Updates on PET Imaging in Neurodegenerative Diseases (퇴행성 뇌질환에서 PET의 발전과 임상적 적용 및 최신 동향)

  • Yu Kyeong Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.3
    • /
    • pp.453-472
    • /
    • 2022
  • Over the past decades, the immense clinical need for early detection methods and treatments for dementia has become a priority worldwide. The advances in PET biomarkers play increasingly important roles in understanding disease mechanisms by demonstrating the protein pathology underlying dementia in the brain. Amyloid-β and tau deposition in PET images are now key diagnostic biomarkers for the Alzheimer's disease continuum. The inclusion of biomarkers in the diagnostic criteria has achieved a paradigm shift in facilitating early differential diagnosis, predicting disease prognosis, and influencing clinical management. Furthermore, in vivo images showing pathology could become prognostic as well as surrogate biomarkers in therapeutic trials. In this review, we focus on recent developments in radiotracers for amyloid-β and tau PET imaging in Alzheimer's disease and other neurodegenerative diseases. Further, we introduce their potential application as future perspectives.

DRG2 Deficiency Causes Impaired Microtubule Dynamics in HeLa Cells

  • Dang, Thao;Jang, Soo Hwa;Back, Sung Hoon;Park, Jeong Woo;Han, In-Seob
    • Molecules and Cells
    • /
    • v.41 no.12
    • /
    • pp.1045-1051
    • /
    • 2018
  • The developmentally regulated GTP binding protein 2 (DRG2) is involved in the control of cell growth and differentiation. Here, we demonstrate that DRG2 regulates microtubule dynamics in HeLa cells. Analysis of live imaging of the plus-ends of microtubules with EB1-EGFP showed that DRG2 deficiency (shDRG2) significantly reduced the growth rate of HeLa cells. Depletion of DRG2 increased 'slow and long-lived' subpopulations, but decreased 'fast and short-lived' subpopulations of microtubules. Microtubule polymerization inhibitor exhibited a reduced response in shDRG2 cells. Using immunoprecipitation, we show that DRG2 interacts with tau, which regulates microtubule polymerization. Collectively, these data demonstrate that DRG2 may aid in affecting microtubule dynamics in HeLa cells.

18F-THK5351 PET Imaging in Nonfluent-Agrammatic Variant Primary Progressive Aphasia

  • Yoon, Cindy W;Jeong, Hye Jin;Seo, Seongho;Lee, Sang-Yoon;Suh, Mee Kyung;Heo, Jae-Hyeok;Lee, Yeong-Bae;Park, Kee Hyung;Okamura, Nobuyuki;Lee, Kyoung-Min;Noh, Young
    • Dementia and Neurocognitive Disorders
    • /
    • v.17 no.3
    • /
    • pp.110-119
    • /
    • 2018
  • Background and Purpose: To analyze $^{18}F-THK5351$ positron emission tomography (PET) scans of patients with clinically diagnosed nonfluent/agrammatic variant primary progressive aphasia (navPPA). Methods: Thirty-one participants, including those with Alzheimer's disease (AD, n=13), navPPA (n=3), and those with normal control (NC, n=15) who completed 3 Tesla magnetic resonance imaging, $^{18}F-THK5351$ PET scans, and detailed neuropsychological tests, were included. Voxel-based and region of interest (ROI)-based analyses were performed to evaluate retention of $^{18}F-THK5351$ in navPPA patients. Results: In ROI-based analysis, patients with navPPA had higher levels of THK retention in the Broca's area, bilateral inferior frontal lobes, bilateral precentral gyri, and bilateral basal ganglia. Patients with navPPA showed higher levels of THK retention in bilateral frontal lobes (mainly left side) compared than NC in voxel-wise analysis. Conclusions: In our study, THK retention in navPPA patients was mainly distributed at the frontal region which was well correlated with functional-radiological distribution of navPPA. Our results suggest that tau PET imaging could be a supportive tool for diagnosis of navPPA in combination with a clinical history.

Estimation of Aerosol Vertical Profile from the MODIS Aerosol Optical Thickness and Surface Visibility Data (MODIS 에어러솔 광학두께와 지상에서 관측된 시정거리를 이용한 대기 에어러솔 연직분포 산출)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.16 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • This study presents a modeling of aerosol extinction vertical profiles in Korea by using the Moderate Resolution Imaging Spectro-radiometer(MODIS) derived aerosol optical thickness(AOT) and ground based visibility observation data. The method uses a series of physical equations for the derivation of aerosol scale height and vertical profiles from MODIS AOT and surface visibility data. The modelled results under the standard atmospheric condition showed small differences with the standard aerosol vertical profile used in the radiative transfer model. Model derived aerosol scale heights for two cases of clean(${\tau}_{MODIS}=0.12{\pm}0.07$, visibility=$21.13{\pm}3.31km$) and hazy atmosphere(${\tau}_{MODIS}=1.71{\pm}0.85$, visibility=$13.33{\pm}5.66km$) are $0.63{\pm}0.33km$ and $1.71{\pm}0.84km$. Based on these results, aerosol extinction profiles can be estimated and the results are transformed into the KML code for visualization of dataset. This has implications for atmospheric environmental monitoring and environmental policies for the future.