Acknowledgement
This work was supported by National Research Foundation (NRF) grants funded by the Korean Government (MSIT) (NRF-2018R1A5A2025964 to S.-J.L. and 2022R1I1A1A01070958 to D.-K.K.). K.W.O. received a scholarship from the BK21-FOUR education program.
References
- Settembre C, Fraldi A, Medina DL and Ballabio A (2013) Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 14, 283-296 https://doi.org/10.1038/nrm3565
- Lim CY and Zoncu R (2016) The lysosome as a command-and-control center for cellular metabolism. J Cell Biol 214, 653-664 https://doi.org/10.1083/jcb.201607005
- Kroemer G and Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5, 886-897 https://doi.org/10.1038/nrc1738
- Ballabio A and Gieselmann V (2009) Lysosomal disorders: from storage to cellular damage. Biochim Biophys Acta - Mol Cell Res 1793, 684-696 https://doi.org/10.1016/j.bbamcr.2008.12.001
- Oliveira C, Ottman R and Orr-Urtreger A (2009) Multicenter analysis of glucocerebrosidase mutations in Parkinson's disease. N Engl J Med 361, 1651-1661 https://doi.org/10.1056/NEJMoa0901281
- Mata IF, Samii A, Schneer SH et al (2008) Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 65, 379-382 https://doi.org/10.1001/archneurol.2007.68
- Kresojevic N, Dobricic V, Svetel M and Kostic V (2014) Mutations in Niemann Pick type C gene are risk factor for Alzheimer's disease. Med Hypotheses 83, 559-562 https://doi.org/10.1016/j.mehy.2014.08.025
- Kim DK, Lim HS, Kawasaki I et al (2016) Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 12, 1849-1863 https://doi.org/10.1080/15548627.2016.1207014
- Jadiya P and Nazir A (2014) A pre-and co-knockdown of RNAseT enzyme, Eri-1, enhances the efficiency of RNAi induced gene silencing in Caenorhabditis elegans. PLoS One 9, e87635
- IBD Consortium (1995) Isolation of a novel gene underlying Batten disease. Cell 82, 949-957 https://doi.org/10.1016/0092-8674(95)90274-0
- Jarvela I, Sainio M, Rantamaki T et al (1998) Biosynthesis and intracellular targeting of the CLN3 protein defective in Batten disease. Hum Mol Genet 7, 85-90 https://doi.org/10.1093/hmg/7.1.85
- Jarvela I, Autti T, Lamminranta S, Aberg L, Raininko R and Santavuori P (1997) Clinical and magnetic resonance imaging findings in batten disease: analysis of the major mutation (1.02-Kb Deletion). Ann Neurol 42, 799-802 https://doi.org/10.1002/ana.410420517
- Kang S, Heo TH and Kim SJ (2014) Altered levels of α-synuclein and sphingolipids in Batten disease lymphoblast cells. Gene 539, 181-185 https://doi.org/10.1016/j.gene.2014.02.017
- Nakanishi E, Uemura N, Akiyama H et al (2021) Impact of Gba2 on neuronopathic Gaucher's disease and α-synuclein accumulation in medaka (Oryzias latipes). Mol Brain 14, 1-15 https://doi.org/10.1186/s13041-021-00790-x
- Huebecker M, Moloney EB, van der Spoel AC et al (2019) Reduced sphingolipid hydrolase activities, substrate accumulation and ganglioside decline in Parkinson's disease. Mol Neurodegener 14, 1-21 https://doi.org/10.1186/s13024-019-0339-z
- Igisu H and Suzuki K (1984) Progressive accumulation of toxic metabolite in a genetic leukodystrophy. Science 224, 753-755 https://doi.org/10.1126/science.6719111
- Chang D, Nalls MA, Hallgrimsdottir IB et al (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet 49, 1511-1516 https://doi.org/10.1038/ng.3955
- Abdelkarim H, Marshall MS, Scesa G et al (2018) α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 8, 1-19 https://doi.org/10.1038/s41598-018-30808-9
- Hatton C, Ghanem SS, Koss DJ et al (2022) Prion-like α-synuclein pathology in the brain of infants with Krabbe disease. Brain 145, 1257-1263 https://doi.org/10.1093/brain/awac002
- Robak LA, Jansen IE, Van Rooij J et al (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 140, 3191-3203 https://doi.org/10.1093/brain/awx285
- Vanier MT, Rodriguez-Lafrasse C, Rousson R et al (1991) Type C Niemann-Pick disease: spectrum of phenotypic variation in disruption of intracellular LDL-derived cholesterol processing. Biochim Biophys Acta Mol Basis Dis 1096, 328-337 https://doi.org/10.1016/0925-4439(91)90069-L
- Auer IA, Schmidt ML, Lee VY et al (1995) Paired helical filament tau (PHFtau) in Niemann-Pick type C disease is similar to PHFtau in Alzheimer's disease. Acta Neuropathol 90, 547-551 https://doi.org/10.1007/BF00318566
- Ohm TG, Treiber-Held S, Distl R et al (2003) Cholesterol and tau protein-findings in Alzheimer's and Niemann Pick C's disease. Pharmacopsychiatry 36, 120-126 https://doi.org/10.1055/s-2003-43060
- Sawamura N, Gong JS, Garver WS et al (2001) Site-specific phosphorylation of tau accompanied by activation of mitogen-activated protein kinase (MAPK) in brains of Niemann-Pick type C mice. J Cell Biol 276, 10314-10319 https://doi.org/10.1074/jbc.M009733200
- Bu B, Klunemann H, Suzuki K et al (2002) Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis 11, 285-297 https://doi.org/10.1006/nbdi.2002.0551
- Saito Y, Suzuki K, Hulette CM and Murayama S (2004) Aberrant phosphorylation of α-synuclein in human Niemann-Pick type C1 disease. J Neuropathol 63, 323-328 https://doi.org/10.1093/jnen/63.4.323
- Myers A, Holmans P, Marshall H et al (2000) Susceptibility locus for Alzheimer's disease on chromosome 10. Science 290, 2304-2305 https://doi.org/10.1126/science.290.5500.2304
- Von Trotha KT, Heun R, Schmitz S, Lutjohann D, Maier W and Kolsch H (2006) Influence of lysosomal acid lipase polymorphisms on chromosome 10 on the risk of Alzheimer's disease and cholesterol metabolism. Neurosci Lett 402, 262-266 https://doi.org/10.1016/j.neulet.2006.04.009
- Riemenschneider M, Mahmoodzadeh S, Eisele T et al (2004) Association analysis of genes involved in cholesterol metabolism located within the linkage region on chromosome 10 and Alzheimer's disease. Neurobiol Aging 25, 1305-1308 https://doi.org/10.1016/j.neurobiolaging.2004.01.001
- Papassotiropoulos A, Wollmer MA, Tsolaki M et al (2005) A cluster of cholesterol-related genes confers susceptibility for Alzheimer's disease. J Clin Psychiatry 66, 940
- Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ and Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383, 550-553 https://doi.org/10.1038/383550a0
- Kan SH, Aoyagi-Scharber M, Le SQ et al (2014) Delivery of an enzyme-IGFII fusion protein to the mouse brain is therapeutic for mucopolysaccharidosis type IIIB. Proc Natl Acad Sci U S A 111, 14870-14875 https://doi.org/10.1073/pnas.1416660111
- Litjens T, Baker EG, Beckmann KR, Morris CP, Hopwood JJ and Callen DF (1989) Chromosomal localization of ARSB, the gene for human N-acetylgalactosamine-4-sulphatase. Hum Genet 82, 67-68 https://doi.org/10.1007/BF00288275
- Vestermark S, Tonnesen T, Andersen MS and Guttler F (1987) Mental retardation in a patient with Maroteaux-Lamy. Clin Genet 31, 114-117 https://doi.org/10.1111/j.1399-0004.1987.tb02779.x
- Schwartz GP and Cohen EJ (1998) Hydrocephalus in Maroteaux-Lamy syndrome. Arch Ophthalmol 116, 400
- Vedolin L, Schwartz IVD, Komlos M et al (2007) Brain MRI in mucopolysaccharidosis: effect of aging and correlation with biochemical findings. Neurology 69, 917-924 https://doi.org/10.1212/01.wnl.0000269782.80107.fe
- Leverenz JB, Yu CE, Montine TJ et al (2007) A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain 130, 1360-1374 https://doi.org/10.1093/brain/awm069
- Hosokawa M, Arai T, Masuda-Suzukake M et al (2015) Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice. J Neuropathol 74, 158-165 https://doi.org/10.1097/NEN.0000000000000158
- Murphy KE, Gysbers AM, Abbott SK et al (2015) Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease. Mov Disord 30, 1639-1647 https://doi.org/10.1002/mds.26141