Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (2019R1A2C1089937 and 2022R1F1A1066394).
References
- Guo J, Huang X, Dou L et al (2022) Aging and agingrelated diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 7, 391
- Campisi J and d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729-740 https://doi.org/10.1038/nrm2233
- Collado M and Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10, 51-57 https://doi.org/10.1038/nrc2772
- Majumder PK, Grisanzio C, O'Connell F et al (2008) A prostatic intraepithelial neoplasia-dependent p27 Kip1 checkpoint induces senescence and inhibits cell proliferation and cancer progression. Cancer Cell 14, 146-155 https://doi.org/10.1016/j.ccr.2008.06.002
- Schosserer M (2022) The role and biology of senescent cells in ageing-related tissue damage and repair. Mech Ageing Dev 202, 111629
- van Deursen JM (2014) The role of senescent cells in ageing. Nature 509, 439-446 https://doi.org/10.1038/nature13193
- von Kobbe C (2019) Targeting senescent cells: approaches, opportunities, challenges. Aging (Albany NY) 11, 12844-12861 https://doi.org/10.18632/aging.102557
- Wiley CD and Campisi J (2021) The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab 3, 1290-1301 https://doi.org/10.1038/s42255-021-00483-8
- Catic A (2018) Cellular Metabolism and Aging. Prog Mol Biol Transl Sci 155, 85-107 https://doi.org/10.1016/bs.pmbts.2017.12.003
- Salminen A and Kaarniranta K (2012) AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev 11, 230-241 https://doi.org/10.1016/j.arr.2011.12.005
- Weichhart T (2018) mTOR as regulator of lifespan, aging, and cellular senescence: a mini-review. Gerontology 64, 127-134 https://doi.org/10.1159/000484629
- Toth MJ and Tchernof A (2000) Lipid metabolism in the elderly. Eur J Clin Nutr 54 Suppl 3, S121-125 https://doi.org/10.1038/sj.ejcn.1601033
- Chung KW (2021) Advances in understanding of the role of lipid metabolism in aging. Cells 10, 880
- Lee G, Kim YY, Jang H et al (2022) SREBP1c-PARP1 axis tunes anti-senescence activity of adipocytes and ameliorates metabolic imbalance in obesity. Cell Metab 34, 702-718 e705
- Houten SM, Violante S, Ventura FV and Wanders RJ (2016) The biochemistry and physiology of mitochondrial fatty acid beta-oxidation and its genetic disorders. Annu Rev Physiol 78, 23-44 https://doi.org/10.1146/annurev-physiol-021115-105045
- Ma Y, Temkin SM, Hawkridge AM et al (2018) Fatty acid oxidation: an emerging facet of metabolic transformation in cancer. Cancer Lett 435, 92-100 https://doi.org/10.1016/j.canlet.2018.08.006
- Carracedo A, Cantley LC and Pandolfi PP (2013) Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 13, 227-232 https://doi.org/10.1038/nrc3483
- Pougovkina O, te Brinke H, Ofman R et al (2014) Mitochondrial protein acetylation is driven by acetyl-CoA from fatty acid oxidation. Hum Mol Genet 23, 3513-3522 https://doi.org/10.1093/hmg/ddu059
- McDonnell E, Crown SB, Fox DB et al (2016) Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep 17, 1463-1472 https://doi.org/10.1016/j.celrep.2016.10.012
- Kumari R and Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol 9, 645593
- Houten SM and Wanders RJ (2010) A general introduction to the biochemistry of mitochondrial fatty acid beta-oxidation. J Inherit Metab Dis 33, 469-477 https://doi.org/10.1007/s10545-010-9061-2
- Kim B, Gwak J, Kim M et al (2023) Suppression of fatty acid oxidation supports pancreatic cancer growth and survival under hypoxic conditions through autophagy induction. Cancer Gene Ther 30, 878-889 https://doi.org/10.1038/s41417-023-00598-y
- Xu C, Wang L, Fozouni P et al (2020) SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 22, 1170-1179 https://doi.org/10.1038/s41556-020-00579-5
- Pouikli A, Parekh S, Maleszewska M et al (2021) Chromatin remodeling due to degradation of citrate carrier impairs osteogenesis of aged mesenchymal stem cells. Nature Aging 1, 810-825 https://doi.org/10.1038/s43587-021-00105-8
- Bruss MD, Khambatta CF, Ruby MA, Aggarwal I and Hellerstein MK (2010) Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates. Am J Physiol Endocrinol Metab 298, E108-116 https://doi.org/10.1152/ajpendo.00524.2009
- Purdom T, Kravitz L, Dokladny K and Mermier C (2018) Understanding the factors that effect maximal fat oxidation. J Int Soc Sports Nutr 15, 3
- Serra D, Mera P, Malandrino MI, Mir JF and Herrero L (2013) Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal 19, 269-284 https://doi.org/10.1089/ars.2012.4875
- Tchkonia T, Morbeck DE, Von Zglinicki T et al (2010) Fat tissue, aging, and cellular senescence. Aging Cell 9, 667-684 https://doi.org/10.1111/j.1474-9726.2010.00608.x
- Yang S, Hwang S, Kim M, Seo SB, Lee JH and Jeong SM (2018) Mitochondrial glutamine metabolism via GOT2 supports pancreatic cancer growth through senescence inhibition. Cell Death Dis 9, 55