DOI QR코드

DOI QR Code

Estimation of Aerosol Vertical Profile from the MODIS Aerosol Optical Thickness and Surface Visibility Data

MODIS 에어러솔 광학두께와 지상에서 관측된 시정거리를 이용한 대기 에어러솔 연직분포 산출

  • Lee, Kwon-Ho (Dept. of Geoinfomatics Engineering, Kyungil University)
  • 이권호 (경일대학교 공간정보공학과)
  • Received : 2013.04.10
  • Accepted : 2013.06.26
  • Published : 2013.06.30

Abstract

This study presents a modeling of aerosol extinction vertical profiles in Korea by using the Moderate Resolution Imaging Spectro-radiometer(MODIS) derived aerosol optical thickness(AOT) and ground based visibility observation data. The method uses a series of physical equations for the derivation of aerosol scale height and vertical profiles from MODIS AOT and surface visibility data. The modelled results under the standard atmospheric condition showed small differences with the standard aerosol vertical profile used in the radiative transfer model. Model derived aerosol scale heights for two cases of clean(${\tau}_{MODIS}=0.12{\pm}0.07$, visibility=$21.13{\pm}3.31km$) and hazy atmosphere(${\tau}_{MODIS}=1.71{\pm}0.85$, visibility=$13.33{\pm}5.66km$) are $0.63{\pm}0.33km$ and $1.71{\pm}0.84km$. Based on these results, aerosol extinction profiles can be estimated and the results are transformed into the KML code for visualization of dataset. This has implications for atmospheric environmental monitoring and environmental policies for the future.

본 연구에서는 MODIS 인공위성으로 분석된 에어러솔 광학두께 자료와 지상에서 관측된 시정거리 자료를 이용하여 에어러솔 연직분포 모델링을 수행하였다. 위성과 지상관측자료로부터 에어러솔의 척도 고도를 구할 수 있었으며, 그 결과는 복사전달 모델에서 사용되고 있는 표준대기 모델과 비교에서 만족할 만한 수준의 근사치를 보였다. 그리고 실제 사례로서 대기가 청명한 경우(${\tau}_{MODIS}=0.12{\pm}0.07$, 시정거리=$21.13{\pm}3.31km$)와 혼탁한 경우(${\tau}_{MODIS}=1.71{\pm}0.85$, 시정거리 =$13.33{\pm}5.66km$)에 대해서 적용하여 척도 고도를 산정한 결과는 각각 전국 평균값으로서 $0.63{\pm}0.33km$$1.71{\pm}0.84km$로 나타났다. 그리고 이 결과를 바탕으로 대기 에어러솔 소산계수의 연직분포를 구할 수 있었으며, 최종적으로 KML 형식으로 코딩되어 관심 영역의 대기 환경 특성 변화를 감시하는데 도움이 될 것으로 기대된다.

Keywords

References

  1. Elterman, L. 1970. Relationships between vertical attenuation and surface meteorological range. Applied Optics 9 (8):1804-1810. https://doi.org/10.1364/AO.9.001804
  2. Engel-Cox, J.A., H.H. Christopher, B.W. Coutant and R.M. Hoff. 2004. Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality. Atmospheric Environment 38(16):2495-2509. https://doi.org/10.1016/j.atmosenv.2004.01.039
  3. Hess, M., P. Koepke and I. Schult. 1998. Optical properties of aerosols and clouds: the software package OPAC. Bulletin of the American Meteorological Society 79(5):831-844. https://doi.org/10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  4. Kaufman, Y.J., D. Tanre, H.R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B.M. Herman, M.D. King and P.M. Teillet. 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect. Journal of Geophysical Research 102(D14):16815-16830. https://doi.org/10.1029/97JD01496
  5. Kim, N.S. and S.Z. Jin. 2011. A study on the web-based representation of thematic maps using geoweb platform. Journal of the Korean Association of Geographic Information Studies 14(1): 107-117 (김남신, 김석주. 2011. GIS와 지오웹 플랫폼을 활용한 웹기반 주제도 표현에 관한 연구. 한국지리정보학회지 14(1): 107-117). https://doi.org/10.11108/kagis.2011.14.1.107
  6. Koschmieder, H. 1924. Theorie der horizontalen Sichweite. Beitrage zur Physik der freien Atmosphare 12(33-53):171-181.
  7. Lee, K.H. 2011. Spatial analysis of major atmospheric aerosol species using earth observing satellite data. Journal of the Korean Association of Geographic Information Studies 14(2):109-127 (이권호. 2011. 지구관측 위성자료를 이용한 주요 대기 에어러솔 성분의 공간분포 분석. 한국지리정보학회지 14(2):109-127). https://doi.org/10.11108/kagis.2011.14.2.109
  8. Lee, K.H. 2012. Aerosol direct radiative forcing by three dimensional observations from passive- and activesatellite sensors. Journal of Korean Society for Atmospheric Environment 28(2):159-171 (이권호. 2011. 수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정. 한국대기환경학회지 28(2):159-171). https://doi.org/10.5572/KOSAE.2012.28.2.159
  9. Lee, K.H. 2013. Three dimensional monitoring of the Asian dust by the COMS/GOCI and CALIPSO satellites observation data. Journal of Korean Society for Atmospheric Environment 29(2):199-210 (이권호. 2013. 천리안 위성 해양탑재체와 위성탑재 라이다 관측자료를 이용한 황사 에어러솔의 3차원 모니터링. 한국대기환경학회지 29(2):199-210). https://doi.org/10.5572/KOSAE.2013.29.2.199
  10. Lee, K.H., J.E. Kim, Y.J. Kim, A.S. Suh, and M.H. Ahn. 2002. Monitoring of atmospheric aerosol using GMS-5 satellite remote sensing data. Journal of the Korean Association of Geographic Information Studies 5(2):1-15 (이권호, 김정은, 김영준, 서애숙, 안명환. 2002. GMS-5 인공위성 원격탐사 자료를 이용한 대기 에어러솔 모니터링. 한국지리정보학회지 5(2):1-15).
  11. Lee, K.H. and S.S. Park. 2012. Relationship between PM2.5 mass concentrations and MODIS aerosol optical thickness at Dukjuk and Jeju island. Korean Journal of Remote Sensing 28(4):449-458 (이권호, 박승식. 2012. 제주도와 덕적도에서 관측된 초미세 입자(PM2.5) 농도와 MODIS 에어러솔 광학 두께와의 관계. 대한원격탐사학회지 28(4): 449-458). https://doi.org/10.7780/kjrs.2012.28.4.8
  12. Lee, K.H., Z. Li, Y.J. Kim and A. Kokhanovsky. 2009. Atmospheric aerosol monitoring from satellite observations: a history of three decades. In: Y.J. Kim et al.(Eds.). Atmospheric and Biological Environmental Monitoring. Springer, pp.13-38.
  13. McClatchey, R.A., R.W. Fenn, J.E.A. Selby, F.E. Volz and J.S. Garin. 1972. Optical properties of the atmosphere. 3rd Ed. AFCRL Environ. Res. Papers No.411,108pp.
  14. Middleton, W. 1952. Vision Through the Atmosphere. University of Toronto Press. 250pp.
  15. Nichol, J.E., M.S. Wong and J. Wang. 2010. A 3D aerosol and visibility information system for urban areas using remote sensing and GIS. Atmospheric Environment 44(21-22): 2501-2506. https://doi.org/10.1016/j.atmosenv.2010.04.036
  16. Qiu, J., X.M. Zong and X.Y. Zhang. 2005. A study of the scaling height of the tropospheric aerosol and its extinction coefficient profile. Journal of Aerosol Science 36(3):361-371. https://doi.org/10.1016/j.jaerosci.2004.10.005
  17. Remer, L.A., Y.J. Kaufman, D. Tanre, S. Mattoo, D.A. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote and B.N. Holben. 2005. The MODIS aerosol algorithm, products and validation. Journal of the Atmospheric Sciences 62(4):947-973. doi:http://dx.doi.org/10.1175/JAS3385.1.
  18. Retalis, A., D.G. Hadjimitsis, S. Michaelides, F. Tymvios, N. Chrysoulakis, C.R.I. Clayton and K. Themistocleous. 2010. Comparison of aerosol optical thickness with in situ visibility data over Cyprus. Natural Hazards and Earth System Sciences 10(3):421-428. doi:http://dx.doi.org/10.5194/nhess-10-421-2010.
  19. Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman and J.J. Morcrette. 1997. Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Transactions on Geoscience and Remote Sensing 35(3):675-686. https://doi.org/10.1109/36.581987
  20. Wong, M.S., J.E. Nichol and K.H. Lee. 2009. Modeling of aerosol vertical profiles using GIS and remote sensing. Sensors 9(6):4380-4389. doi:http://10.3390/s90604380.