• 제목/요약/키워드: Targeting Drug delivery system

검색결과 34건 처리시간 0.022초

Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery

  • Park, Sin-Jung;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.201-212
    • /
    • 2010
  • Self-organized nanogels from polysaccharide derivatives offer a promising approach in treatment of cancer due to their flexibility in chemistry and their ability to improve the therapeutic index of a drug by modifying biodistribution by their preferential localization at target sites and lower distribution in normal healthy tissues. These properties have promoted studies of active cancer targeting by self-organized nanogels for even better accumulation in solid tumors. However although many researchers have reported their potential by using cell culture systems and small animal tumor models in cancer therapy, these nanogels need more decoration such as conjugation with targeting moiety and endowment of stimuli-sensitivity for precise targeting of the cancer site. In this review, we summarize the recent efforts in developing novel targeting approaches via active endocytosis and stimuli-sensitive systems responding to hyperthermic or acidic tumor pH conditions.

Antiapoptotic Fusion Protein Delivery Systems

  • Tan, Cheau Yih;Kim, Yong-Hee
    • Macromolecular Research
    • /
    • 제16권6호
    • /
    • pp.481-488
    • /
    • 2008
  • Apoptosis is a natural cell suicide mechanism to maintain homeostasis. However, many of the diseases encountered today are caused by aberrant apoptosis where excessive apoptosis leads to neurodegenerative disorders, ischemic heart disease, autoimmune disorders, infectious diseases, etc. A variety of antiapoptotic agents have been reported to interfere with the apoptosis pathway. These agents can be potential drug candidates for the treatment or prevention of diseases caused by dysregulated apoptosis. Obviously, world-wide pharmaceutical and biotechnology companies are gearing up to develop antiapoptotic drugs with some products being commercially available. Polymeric drug delivery systems are essential to their success. Recent R&D efforts have focused on the chemical or bioconjugation of antiapoptotic proteins with the protein transduction domain (PTD) for higher cellular uptake with antibodies for specific targeting as well as with polymers to enhance the protein stability and prolonged effect with success observed both in vivo and in vitro. All these different fusion antiapoptotic proteins provide promising results for the treatment of dysregulated apoptosis diseases.

담체(膽體)를 이용(利用)한 약물(藥物)의 표적조직집중기법(標的組織集中技法) -리포솜을 중심(中心)으로- (Targeting of Drugs Especially by Liposomes)

  • 심창구;이준호
    • Journal of Pharmaceutical Investigation
    • /
    • 제13권4호
    • /
    • pp.153-172
    • /
    • 1983
  • The use of carrier systems for the delivery of drugs to areas in the body in need of pharmacological intervention is now the subject of intense research in many laboratories. Because of its obvious advantages (e.g. protection of drugs from hostile environments, facilitated target penetration and avoidance of side effects), drug delivery is expected to ease the pressure and expense of new drug development by making better use of drugs in existence. Generally, carrier-mediated delivery has been envisaged either as direct transport of drugs to a biological target by a carrier that will associate with it selectively, or as release of drugs from a carrier circulating in the blood or immobilized in tissues, at rates compatible with optimal action. One system that has attracted considerable attention is the use of liposomes as carriers of pharmacologically active agents. 154 references were reviewed with special emphasis on the targeting of drugs by use of liposomes in this respect. Recent advances in the other carrier systems and in methods for the preparation of liposomes were also reviewed briefly.

  • PDF

Colonic Delivery를 위한 펙틴 비드로부터 BSA의 방출 특성 (Release Properties of BSA from Pectin Heads for Colonic Drug Delivery)

  • 최춘순;박상무;송원현;이창문;이기영;김동운;김진철
    • KSBB Journal
    • /
    • 제18권2호
    • /
    • pp.161-164
    • /
    • 2003
  • 경구 투여가 비교적 어려운 단백질 약물을 생체적합성이 우수하고 생분해성을 가진 펙틴을 이용하여 목적하는 colon에 전달하고자 하였다. 이온결합을 통해 펙틴, 펙틴-알긴산비드를 제조할 수 있었고, 단백질 약물인 BSA를 포함하여 방출을 행한 결과, 비드의 건조온도가 높을수록 방출률이 높은 경향을 보인 반면, 동결건조된 비드가 가장 높은 방출을 나타냈다. 또한, 가교제의 농도를 높게 처리한 비드일수록 방출률이 낮았다. 경구 투여 후 colon에 도달할 것으로 예상되는 5시간 후에 펙틴 분해효소를 처리한 결과, 효소 처리하지 않은 비드에 비해 급격한 방출이 일어났다. 이러한 결과로 colon내에 존재하는 미생물이 분비하는 효소에 의해 펙턴 비드에 포함된 약물이 방출될 것으로 판단된다. 따라서, 경구로 투여된 펙틴 비드 안의 약물이 소화기관에서 안정하게 통과하고 colon에서 방출되어 효과를 나타낼 것으로 판단된다.

적혈구를 이용한 약물 수송 (Erythrocyte as Drug Carrier)

  • 용철순;박경아
    • Journal of Pharmaceutical Investigation
    • /
    • 제22권1호
    • /
    • pp.1-10
    • /
    • 1992
  • The use of erythrocyte as drug carrier has been reviewed, Carrier erythrocytes have proven to offer many advantages for delivery of therapeutic agents, especially in the treatment of inherited enzyme deficiency and cancer. Carrier erythrocytes are biodegradable and nonimmunogenic. Encapsulated drugs may be protected from premature degradation, inactivation and excretion. Carrier erythrocytes may be used as a slow-release system. Targeting of encapsulated drugs directly to a site of action is another possibility. Methods for encapsulating drugs into erythrocytes, the fate of carrier erythrocytes in vivo, the strategies of targeting carrier erythrocytes to special organs and in vivo applications of erythrocytes have been discussed. The encapsulation of drugs in erythrocytes has shown attractive possibilites in future use.

  • PDF

나노의학: 나노물질을 이용한 약물전달시스템과 나노입자의 표적화 (Nanomedicine: Drug Delivery Systems and Nanoparticle Targeting)

  • 윤혜원;강건욱;정준기;이동수
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권5호
    • /
    • pp.337-346
    • /
    • 2008
  • Applications of nanotechnology in the medical field have provided the fundamentals of tremendous improvement in precise diagnosis and customized therapy. Recent advances in nanomedicine have led to establish a new concept of theragnosis, which utilizes nanomedicines as a therapeutic and diagnostic tool at the same time. The development of high affinity nanoparticles with large surface area and functional groups multiplies diagnostic and therapeutic capacities. Considering the specific conditions related to the disease of individual patient, customized therapy requires the identification of disease target at the cellular and molecular level for reducing side effects and enhancing therapeutic efficiency. Well-designed nanoparticles can minimize unnecessary exposure of cytotoxic drugs and maximize targeted localization of administrated drugs. This review will focus on major pharmaceutical nanomaterials and nanoparticles as key components of designing and surface engineering for targeted theragnostic drug development.

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif;Hyeong-Woo Song;Daewon Jung;Hiep Xuan Cao;Jong-Oh Park;Byungjeon Kang;Eunpyo Choi
    • 센서학회지
    • /
    • 제32권6호
    • /
    • pp.418-424
    • /
    • 2023
  • Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

효과적인 약물전달 시스템을 위한 나노입자 유도 장치 (Nanoparticle Inducing Device for Effective Drug Delivery System)

  • 이총명;한현호;장병한;오은설;기재홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권3호
    • /
    • pp.102-110
    • /
    • 2017
  • 본 논문은 자석을 회전시켜 실시간으로 자기장을 변화시키고 그로 인해 특정 조건에서 산화철 나노입자를 side point(피부)보다 center point(심부)에서 더 많이 유도할 수 있다는 가능성을 제시하였다. 향후 연구로 유속에 따른 Critical Magnetic flux density, 시간에 따른 나노입자 축적량, 자기장과 산화철 나노입자의 상호작용을 고려한 실험 설계, 전자석 등을 이용한 자기장조절을 연구하여 실질적인 혈관에서 본 실험을 진행할 계획이다.

별아교세포 선택적 유전자 치료전달을 위한 PLGA 나노입자 개발 (Development of PLGA Nanoparticles for Astrocyte-specific Delivery of Gene Therapy: A Review)

  • 신효정;이가영;권기상;권오유;김동운
    • 생명과학회지
    • /
    • 제31권9호
    • /
    • pp.849-855
    • /
    • 2021
  • 최근에는 나노기술이 다양한 분야에 도입되고 활용되면서 신약개발이 가속화되고 있다. 나노입자는 약물의 단일 투여로 장기간 동안 혈중 약물 농도를 유지하고, 병리학적 부위에만 선택적으로 방출되는 장점이 있어 비병리 주위에 대한 부작용을 줄일 수 있다. Poly (D,L-lactic-co-glycolic acid) (PLGA)는 가장 광범위하게 개발된 생분해성 고분자 중 하나이다. PLGA는 다양한 응용분야의 약물전달에 널리 사용된다. 또한 FAD에 의해 약물전달 시스템으로 승인되었으며, 유전자 치료제와 같은 제어방출제형에 널리 적용된다. PLGA 나노입자는 수동 및 능동 표적화 방법을 사용하여 특정 세포 유형에 고효율의 전달 시스템으로 개발되었다. 이러한 PLGA 나노입자를 이용한 약물전달체 개발 후 표적 부위에 선택적으로 약물을 전달하고 질병에 따라 장기간 유효 혈중 농도를 최적화한다. 이 리뷰논문에서 우리는 유전자 치료를 위한 PLGA 나노 물질을 기반으로 하는 성상 세포 선택적 나노입자의 개발을 조사하여 세포 특이적으로 치료결과를 향상시키는 방법에 중점을 두고자 한다.

Development of Specific organ targeting drug delivery system II : Physico-pharaceutical study on the crose-linked albumin microspheres containing cytarabine

  • Kim, Chong-Kook;Lee, Jin-Kyu;Lah, Woon-Lyong
    • Archives of Pharmacal Research
    • /
    • 제9권1호
    • /
    • pp.39-43
    • /
    • 1986
  • Bovine serum albumin microspheres containing cytarabine were prepared using cross-linking agent, formaldehyde. The shape and the size distribution of them were observed. The shape of them was spherical and the susrface was compact and smooth. The size distribution of them was affected by dispersion forces during emulsfication. The release of cytarabine from albumin microspheres was dependent upon cross-linking time, amount of cross-linking agent and drug/albumin ratio. However, the difference of drug release by the dispersion forces was not great. After release test, the shape of albumin microspheres was nonspherical and the albumin matrix seemed to be a little relaxed. The degradation tests of albumin microspheres by the proteolytic enzyme showed that albumin microspheres were progressively digested according to the cross-linking degree.

  • PDF