DOI QR코드

DOI QR Code

Ultrasonic Targeting of NK Cell in Vessel Bifurcation for Immunotherapy: Simulation and Experimental Validation

  • Saqib Sharif (School of Mechanical Engineering, Chonnam National University) ;
  • Hyeong-Woo Song (Korea Institute of Medical Microrobotics) ;
  • Daewon Jung (Korea Institute of Medical Microrobotics) ;
  • Hiep Xuan Cao (Korea Institute of Medical Microrobotics) ;
  • Jong-Oh Park (Korea Institute of Medical Microrobotics) ;
  • Byungjeon Kang (Korea Institute of Medical Microrobotics) ;
  • Eunpyo Choi (School of Mechanical Engineering, Chonnam National University)
  • Received : 2023.11.13
  • Accepted : 2023.11.17
  • Published : 2023.11.30

Abstract

Natural killer (NK) cells play a crucial role in combating infections and tumors. However, their therapeutic application in solid tumors is hindered by challenges, such as limited lifespan, tumor penetration, and delivery precision. Our research introduces a novel ultrasonic actuation technique to navigate NK cells more effectively in the vascular system, particularly at vessel bifurcations where targeted delivery is most problematic. We use a hemispherical ultrasonic transducer array that generates phase-modulated traveling waves, focusing on an ultrasound beam to steer NK cells using blood-flow dynamics and a focused acoustic field. This method enables the precise obstruction of non-target vessels and efficiently directs NK cells toward the tumor site. The simulation results offer insights into the behavior of NK cells under various conditions of cell size, radiation pressure, and fluid velocity, which inform the optimization of their trajectories and increase targeting efficiency. The experimental results demonstrate the feasibility of this ultrasonic approach for enhancing NK cell targeting, suggesting a potential leap forward in solid tumor immunotherapy. This study represents a significant step in NK cell therapeutic strategies, offering a viable solution to the existing limitations and promising enhancement of the efficacy of cancer treatments.

Keywords

Acknowledgement

This research was supported by a grant from the Korean Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant number: RS-2023-00302148).

References

  1. H. Bruus, "Acoustofluidics 7: The acoustic radiation force on small particles", Lab Chip, Vol. 12, No. 6, pp. 1014-1021, 2012. https://doi.org/10.1039/c2lc21068a
  2. S. Madersbacher, M. Pedevilla, L. Vingers, M. Susani, and M. Marberger, "Effect of high-intensity focused ultrasound on human prostate cancer in vivo", Cancer Res., Vol. 55, No. 15, pp. 3346-3351, 1995.
  3. O. Al-Bataineh, J. Jenne, and P. Huber, "Clinical and future applications of high intensity focused ultrasound in cancer", Cancer Treat. Rev., Vol. 38, No. 5, pp. 346-353, 2012. https://doi.org/10.1016/j.ctrv.2011.08.004
  4. C. G. Chaussy and S. Thuroff, "High-Intensity Focused Ultrasound for the Treatment of Prostate Cancer: A Review", J. Endourol., Vol. 31, No. S1, pp. S30-S37, 2017. https://doi.org/10.1089/end.2016.0548
  5. J. E. Lingeman, J. A. McAteer, E. Gnessin, and A. P. Evan, "Shock wave lithotripsy: advances in technology and technique", Nat. Rev. Urol., Vol. 6, No. 12, pp. 660-670, 2009. https://doi.org/10.1038/nrurol.2009.216
  6. S.-M. Lee, N. Collin, H. Wiseman, and J. Philip, "Optimisation of shock wave lithotripsy: a systematic review of technical aspects to improve outcomes", Transl. Androl. Urol., Vol. 8, No. 4, pp. S389(1)-S389(9), 2019.
  7. C. Cerrato, V. Jahrreiss, C. Nedbal, F. Ripa, V. De Marco, M. Monga, A. Pietropaolo, and B. Somani, "Shockwave Lithotripsy for De-Novo Urolithiasis after Kidney Transplantation: A Systematic Review of the Literature", J. Clin. Med., Vol. 12, No. 13, pp. 4389(1)-4389(10), 2023.
  8. M. Sagris, A. Tzoumas, D. G. Kokkinidis, G. Korosoglou, M. Lichtenberg, and G. Tzavellas, "Invasive and pharmacological treatment of deep vein thrombosis: A scoping review", Curr. Pharm. Des., Vol. 28, No. 10, pp. 778-786, 2022. https://doi.org/10.2174/1381612828666220418084339
  9. N. B. Smith, "Applications of ultrasonic skin permeation in transdermal drug delivery", Expert Opin. Drug Deliv., Vol. 5, No. 10, pp. 1107-1120, 2008. https://doi.org/10.1517/17425247.5.10.1107
  10. A. E. Cohen and W. E. Moerner, "Method for trapping and manipulating nanoscale objects in solution", Appl. Phys. Lett., Vol. 86, No. 9, p. 093109, 2005.
  11. G. Go, V. D. Nguyen, Z. Jin, J.-O. Park, and S. Park, "A Thermo-electromagnetically Actuated Microrobot for the Targeted Transport of Therapeutic Agents", Int. J. Control Autom. Syst., Vol. 16, No. 3, pp. 1341-1354, 2018. https://doi.org/10.1007/s12555-017-0060-z
  12. H. X. Cao, D. Jung, H. S. Lee, V. D. Nguyen, E. Choi, B. Kang, J. O. Park, and C. S. Kim, "Holographic Acoustic Tweezers for 5-DoF Manipulation of Nanocarrier Clusters toward Targeted Drug Delivery", Pharmaceutics, Vol. 14, No. 7, pp. 1490(1)-1490(16), 2022.
  13. E. Thomas, J. U. Menon, J. Owen, I. Skaripa-Koukelli, S. Wallington, M. Gray, C. Mannaris, V. Kersemans, D. Allen, P. Kinchesh, S. Smart, R. Carlisle, and K. A. Vallis, "Ultrasound-mediated cavitation enhances the delivery of an EGFR-targeting liposomal formulation designed for chemo-radionuclide therapy", Theranostics, Vol. 9, No. 19, pp. 5595-5609, 2019. https://doi.org/10.7150/thno.34669
  14. C.-Y. Ting, C.-H. Fan, H.-L. Liu, C.-Y. Huang, H.-Y. Hsieh, T.-C. Yen, K.-C. Wei, and C.-K. Yeh, "Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment", Biomaterials, Vol. 33, No. 2, pp. 704-712, 2012. https://doi.org/10.1016/j.biomaterials.2011.09.096
  15. T. Ilovitsh, Y. Feng, J. Foiret, A. Kheirolomoom, H. Zhang, E. S. Ingham, A. Ilovitsh, S. K. Tumbale, B. Z. Fite, B. Wu, M. N. Raie, N. Zhang, A. J. Kare, M. Chavez, L. S. Qi, G. Pelled, D. Gazit, O. Vermesh, I. Steinberg, S. S. Gambhir, and K. W. Ferrara, "Low-frequency ultrasound-mediated cytokine transfection enhances T cell recruitment at local and distant tumor sites", Proc. Natl. Acad. Sci. USA, Vol. 117, No. 23, pp. 12674-12685, 2020. https://doi.org/10.1073/pnas.1914906117
  16. F. Fang, W. Xiao, and Z. Tian, "NK cell-based immunotherapy for cancer", Semin. Immunol., Vol. 31, pp. 37-54, 2017. https://doi.org/10.1016/j.smim.2017.07.009
  17. H. W. Song, H. S. Lee, S. J. Kim, H. Y. Kim, Y. H. Choi, B. Kang, C. S. Kim, J. O. Park, and E. Choi, "Sonazoid-Conjugated Natural Killer Cells for Tumor Therapy and Real-Time Visualization by Ultrasound Imaging", Pharmaceutics, Vol. 13, No. 10, pp. 1689(1)-1689(10), 2021.
  18. V. Bachanova, L. J. Burns, D. H. McKenna, J. Curtsinger, A. Panoskaltsis-Mortari, B. R. Lindgren, S. Cooley, D. Weisdorf, and J. S. Miller, "Allogeneic natural killer cells for refractory lymphoma", Cancer Immunol. Immunother., Vol. 59, No. 11, pp. 1739-1744, 2010. https://doi.org/10.1007/s00262-010-0896-z
  19. M. Fan, M. Li, L. Gao, S. Geng, J. Wang, Y. Wang, Z. Yan, and L. Yu, "Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia", J. Hematol. Oncol., Vol. 10, No. 1, pp. 151(1)-151(14), 2017. https://doi.org/10.1186/s13045-016-0379-6
  20. C. A. Ramos, H. E. Heslop, and M. K. Brenner, "CAR-T Cell Therapy for Lymphoma", Annu. Rev. Med., Vol. 67, pp. 165-183, 2016. https://doi.org/10.1146/annurev-med-051914-021702
  21. A. Merino, J. Maakaron, and V. Bachanova, "Advances in NK cell therapy for hematologic malignancies: NK source, persistence and tumor targeting", Blood Rev., Vol. 60, p. 101073, 2023.
  22. E. Mylod, J. Lysaght, and M. J. Conroy, "Natural killer cell therapy: A new frontier for obesity-associated cancer", Cancer Lett., Vol. 535, p. 215620, 2022.
  23. D. Murugan, V. Murugesan, B. Panchapakesan, and L. Rangasamy, "Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy", Cancers, Vol. 14, No. 21, pp. 5438(1)-5438(24), 2022. https://doi.org/10.3390/cancers14215438
  24. M. J. Ko, H. Hong, H. Choi, H. Kang, and D. Kim, "Multifunctional magnetic nanoparticles for dynamic imaging and therapy", Adv. NanoBio. Res., Vol. 2, No. 11, p. 2200053, 2022.
  25. S. Sharif, K. T. Nguyen, D. Bang, J.-O. Park, and E. Choi, "Optimization of Field-Free Point Position, Gradient Field and Ferromagnetic Polymer Ratio for Enhanced Navigation of Magnetically Controlled Polymer-Based Microrobots in Blood Vessel", Micromachines, Vol. 12, No. 4, pp. 424(1)-424(15), 2021. https://doi.org/10.3390/mi12040424
  26. H. T. O'Neil, "Theory of focusing radiators", J. Acoust. Soc. Am., Vol. 21, No. 5, pp. 516-526, 1949. https://doi.org/10.1121/1.1906542
  27. L. P. Gor'kov, "On the forces acting on a small particle in an acoustical field in an ideal fluid", Vol. 6, pp. 773-775, 1962.
  28. L. R. Taggart, R. E. Baddour, A. Giles, G. J. Czarnota, and M. C. Kolios, "Ultrasonic characterization of whole cells and isolated nuclei", Ultrasound Med. Biol., Vol. 33, No. 3, pp. 389-401, 2007. https://doi.org/10.1016/j.ultrasmedbio.2006.07.037
  29. A. Zipursky, E. Bow, R. S. Seshadri, and E. J. Brown, "Leukocyte density and volume in normal subjects and in patients with acute lymphoblastic leukemia", Blood, Vol. 48, No. 3, pp. 361-371, 1976. https://doi.org/10.1182/blood.V48.3.361.361
  30. J. Dahmani, C. Laporte, D. Pereira, P. Belanger, and Y. Petit, "Predictive Model for Designing Soft-Tissue Mimicking Ultrasound Phantoms With Adjustable Elasticity", IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 67, No. 4, pp. 715-726, 2020. https://doi.org/10.1109/TUFFC.2019.2953190