DOI QR코드

DOI QR Code

Self-organized Nanogels of Polysaccharide Derivatives in Anti-Cancer Drug Delivery

  • Park, Sin-Jung (Department of Biotechnology, The Catholic University of Korea) ;
  • Na, Kun (Department of Biotechnology, The Catholic University of Korea)
  • Received : 2010.07.20
  • Accepted : 2010.07.31
  • Published : 2010.08.20

Abstract

Self-organized nanogels from polysaccharide derivatives offer a promising approach in treatment of cancer due to their flexibility in chemistry and their ability to improve the therapeutic index of a drug by modifying biodistribution by their preferential localization at target sites and lower distribution in normal healthy tissues. These properties have promoted studies of active cancer targeting by self-organized nanogels for even better accumulation in solid tumors. However although many researchers have reported their potential by using cell culture systems and small animal tumor models in cancer therapy, these nanogels need more decoration such as conjugation with targeting moiety and endowment of stimuli-sensitivity for precise targeting of the cancer site. In this review, we summarize the recent efforts in developing novel targeting approaches via active endocytosis and stimuli-sensitive systems responding to hyperthermic or acidic tumor pH conditions.

Keywords

References

  1. Akiyoshi, K., Kang, E.C., Kurumada, S., Sunamoto, J., Principi, T., Winnik, F.M., 2000. Controlled association of amphiphilic polymers in water: thermosensitive nanoparticles formed by self-assembly of hydrophobically modified pullulans and poly (N-isopropylacrylamides). Macromolecules 33, 3244-3249. https://doi.org/10.1021/ma991798d
  2. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B., Seed, B., 1990. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303-1313. https://doi.org/10.1016/0092-8674(90)90694-A
  3. Bae, B.C., Na, K., 2010. Self-quenching polysaccharide-based nanogels of pullulan/folate-photosensitizer conjugates for photodynamic therapy. Biomaterials 31, 6325-6335. https://doi.org/10.1016/j.biomaterials.2010.04.030
  4. Bae, Y., Kataoka, K., 2006. Significant enhancement of antitumor activity and bioavailability of intracellular pH-sensitive polymeric micelles by folate conjugation. J. Controlled Release 116, e49-50. https://doi.org/10.1016/j.jconrel.2006.09.044
  5. Bae, Y.S., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M., Kataoka, K., 2005. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem 16, 122-130. https://doi.org/10.1021/bc0498166
  6. Bagalkot, V., Farokhzad, O.C., Langer, R., Jon, S., 2006. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. 118, 8329-8332. https://doi.org/10.1002/ange.200602251
  7. Balthasar, S., Michaelis, K., Dinauer, N., von Briesen, H., Kreuter, J., Langer, K., 2005. Preparation and characterisation of anti-body modified gelatin nanoparticles as drug carrier system for uptake in lymphocytes. Biomaterials 26, 2723-2732. https://doi.org/10.1016/j.biomaterials.2004.07.047
  8. Banerji, S., Ni, J., Wang, S.X., Clasper, S., Su, J., Tammi, R., Jones, M., Jackson, D.G., 1999. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. The Journal of cell biology 144, 789. https://doi.org/10.1083/jcb.144.4.789
  9. Benhar, I., Padlan, E., Jung, S., Lee, B., Pastan, I., 1994. Rapid humanization of the Fv of monoclonal antibody B3 by using framework exchange of the recombinant immunotoxin B3 (Fv)-PE38. Proc. Natl. Acad. SCI. USA. 91, 12051. https://doi.org/10.1073/pnas.91.25.12051
  10. Bhattacharya, S., Eckert, F., Boyko, V., Pich, A., 2007. Temperature-, pH-, and magnetic-field-sensitive hybrid microgels. Small 3, 650-657. https://doi.org/10.1002/smll.200600590
  11. Bonifati, D., Ori, C., Rossi, C., Caira, S., Fanin, M., Angelini, C., 2000. Neuromuscular damage after hyperthermic isolated limb perfusion in patients with melanoma or sarcoma treated with chemotherapeutic agents. Cancer Chemother. Pharmacol. 46, 517-522. https://doi.org/10.1007/s002800000175
  12. Borisov, O.V., Zhulina, E.B., 2005. Reentrant morphological transitions in copolymer micelles with pH-sensitive corona. Langmuir 21, 3229-3231. https://doi.org/10.1021/la0469203
  13. Bougrine, R., Masson, C., Hatier, R., Nex , E., Nicolas, J., Gueant, J., 1996. Receptor binding of transcobalamin II-cobalamin in human colon adenocarcinoma HT 29 cell line. J. Nutr. Biochem. 7, 397-402. https://doi.org/10.1016/S0955-2863(96)00062-9
  14. Brigger, I., Dubernet, C., Couvreur, P., 2002. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Del. Rev. 54, 631-651. https://doi.org/10.1016/S0169-409X(02)00044-3
  15. Chen, T.J,, Cheng, T.H., Chen, C.Y., Hsu, S., Cheng, T.L., Liu, G.C., Wang, Y.M., 2009. Targeted herceptin-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem. 14, 253-260. https://doi.org/10.1007/s00775-008-0445-9
  16. Choi, K.Y., Chung, H., Min, K.H., Yoon, H.Y., Kim, K., Park, J.H., Kwon, I.C., Jeong, S.Y., 2010, Self-ssembled hyaluronic acid nanoparticles for active tumor targeting. Biomaterials 31, 106-114. https://doi.org/10.1016/j.biomaterials.2009.09.030
  17. Cohn, D., Sosnik, A., Levy, A., 2003. Improved reverse thermoresponsive polymeric systems. Biomaterials 24, 3707-3714. https://doi.org/10.1016/S0142-9612(03)00245-X
  18. Collins, D.A., Hogenkamp, H.D., O'Connor, M.K., Naylor, S., Benson, L.M., Hardyman, T.J., Thorson, L.M., 2000. Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clinic, 568-580.
  19. Correa-Gonzalez, L., Arteaga de Murphy, C., Ferro-Flores, G., Pedraza-Lopez, M., Murphy-Stack, E., Mino-Leon, D., Perez- Villasenor, G., Diaz-Torres, Y., Munoz-Olvera, R., 2003. Uptake of 153Sm-DTPA-bis-biotin and 99mTc-DTPA-bisbiotin in rat as-30D-hepatoma cells. Nucl. Med. Biol. 30, 135-140. https://doi.org/10.1016/S0969-8051(02)00379-7
  20. Dincer, S., Rzaev, Z.M.O., Piskin, E., 2006. Synthesis and Characterization of Stimuli-Responsive Poly (N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone). J. Polym. Res. 13, 121-131. https://doi.org/10.1007/s10965-005-9014-x
  21. Engin, K., Leeper, D.B., Cater, J.R., Thistlethwaite, A.J., Tupchong, L., McFarlane, J.D., 1995. Extracellular pH distribution in human tumours. IJHy 11, 211-216.
  22. Flodh, H., Ullberg, S., 1968. Accumulation of labelled vitamin B12 in some transplanted tumours. Int. J. Cancer 3, 694-699. https://doi.org/10.1002/ijc.2910030518
  23. Ganta, S., Devalapally, H., Shahiwala, A., Amiji, M., 2008. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Controlled Release 126, 187-204. https://doi.org/10.1016/j.jconrel.2007.12.017
  24. Henke, C.A., Roongta, U., Mickelson, D.J., Knutson, J.R., McCarthy, J.B., 1996. CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J. Clin. Invest. 97, 2541-2552. https://doi.org/10.1172/JCI118702
  25. Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, W.G., Griffith, L., Torchilin, V.P., Jain, R.K., 1998. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. U. S. A. 95, 4607-4612. https://doi.org/10.1073/pnas.95.8.4607
  26. Homma, A., Sato, H., Tamura, T., Okamachi, A., Emura, T., Ishizawa, T., Kato, T., Matsuura, T., Sato, S., Higuchi, Y., 2009. Synthesis and optimization of hyaluronic acid-methotrexate conjugates to maximize benefit in the treatment of osteoarthritis. Biorg. Med. Chem.,1062-1075
  27. Huang, S.H., Sun, S.L., Feng, T.H., Sung, K.H., Lui, W.L., Wang, L.F., 2009. Folate-mediated chondroitin sulfate-$Pluronic^{(R)}$ 127 nanogels as a drug carrier. Eur. J. Pharm. Sci. 38, 64-73. https://doi.org/10.1016/j.ejps.2009.06.002
  28. Hwang, H.Y., Kim, I.S., Kwon, I.C., Kim, Y.H., 2008. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J. Controlled Release 128, 23-31. https://doi.org/10.1016/j.jconrel.2008.02.003
  29. Hymes, J., Wolf, B., 1999. Human biotinidase isn't just for recycling biotin. J. Nutr. 129, 485-489.
  30. Jaracz, S., Chen, J., Kuznetsova, L.V., Ojima, I., 2005. Recent advances in tumor-targeting anticancer drug conjugates. Biorg. Med. Chem. 13, 5043-5054. https://doi.org/10.1016/j.bmc.2005.04.084
  31. Jeong, Y.I,, Na, H.S., Oh, J.S., Choi, K.C., Song, C.E., Lee, H.C., 2006. Adriamycin release from self-assembling nanospheres of poly (dl-lactide-co-glycolide)-grafted pullulan. Int. J. Pharm. 322, 154-160. https://doi.org/10.1016/j.ijpharm.2006.05.020
  32. Jeong, Y.I., Nah, J.W., Na, H.K., Na, K., Kim, I.S., Cho, C.S., Kim, S.H., 1999. Self-assembling nanospheres of hydrophobized pullulans in water. Drug Dev. Ind. Pharm. 25, 917-927. https://doi.org/10.1081/DDC-100102252
  33. Jung, S.W., Jeong, Y.I., Kim, S.H., 2003. Characterization of hydrophobized pullulan with various hydrophobicities. Int. J. Pharm. 254, 109-121. https://doi.org/10.1016/S0378-5173(03)00006-1
  34. Kabanov, A.V., Vinogradov, S.V., 2009. Nanogels as pharmaceutical carriers: finite networks of infinite capabilities. Angew. Chem. Int. Edit. 48, 5418-5429. https://doi.org/10.1002/anie.200900441
  35. Kakizawa, Y., Harada, A., Kataoka, K., 1999. Environment-sensitive stabilization of core- shell structured polyion complex micelle by reversible cross-linking of the core through disulfide bond. J. Am. Chem. Soc 121, 11247-11248. https://doi.org/10.1021/ja993057y
  36. Kaneo, Y., Tanaka, T., Nakano, T., Yamaguchi, Y., 2001. Evidence for receptor-mediated hepatic uptake of pullulan in rats. J. Controlled Release 70, 365-373. https://doi.org/10.1016/S0168-3659(00)00368-0
  37. Khaw, B.A., Klibanov, A., O'Donnell, S.M., Saito, T., Nossiff, N., Slinkin, M.A., Newell, J.B., Strauss, H.W., Torchilin, V.D., 1991. Gamma imaging with negatively charge-modified monoclonal antibody: modification with synthetic polymers. J. Nucl. Med. 32, 1742.
  38. Kim, S., Park, K.M., Ko, J.Y., Kwon, I.C., Cho, H.G., Kang, D., Yu, I.T., Kim, K., Na, K., 2008. Minimalism in fabrication of self-organized nanogels holding both anti-cancer drug and targeting moiety. Colloids Surf. B. Biointerfaces 63, 55-63. https://doi.org/10.1016/j.colsurfb.2007.11.009
  39. Kumar, M.N., Muzzarelli, R.A., Muzzarelli, C., Sashiwa, H., Domb, A.J., 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104, 6017-6084. https://doi.org/10.1021/cr030441b
  40. Laurent, T.C., 1998. The chemistry, biology and medical applications of hyaluronan and its derivatives. Portland Pr. London, U.K.
  41. Leathers, T.D., 2003. Biotechnological production and applications of pullulan. Appl. Microbiol. Biotechnol. 62, 468-473. https://doi.org/10.1007/s00253-003-1386-4
  42. Lee, E.S., Na, K., Bae, Y.H., 2003. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control Release 91, 103-113. https://doi.org/10.1016/S0168-3659(03)00239-6
  43. Letchford, K., Burt, H., 2007. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur. J. Pharm. Biopharm. 65, 259-269. https://doi.org/10.1016/j.ejpb.2006.11.009
  44. Liu, Z., Jiao, Y., Wang, Y., Zhou, C., Zhang, Z., 2008. Polysaccharides- based nanoparticles as drug delivery systems. Adv. Drug Del. Rev. 60, 1650-1662. https://doi.org/10.1016/j.addr.2008.09.001
  45. Loh, X.J., Li, J., 2007. Biodegradable thermosensitive copolymer hydrogels for drug delivery. Expert. Opin. Thera. Pat. 17, 965-977. https://doi.org/10.1517/13543776.17.8.965
  46. Loungnarath, R., Causeret, S., Bossard, N., Faheez, M., Sayag- Beaujard, A.C., Brigand, C., Gilly, F., Glehen, O., 2005. Cytoreductive surgery with intraperitoneal chemohyperthermia for the treatment of pseudomyxoma peritonei: a prospective study. Dis. Colon Rectum 48, 1372-1379. https://doi.org/10.1007/s10350-005-0045-5
  47. Lu, Y., Low, P.S., 2002. Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv. Drug Del. Rev. 54, 675-693. https://doi.org/10.1016/S0169-409X(02)00042-X
  48. Lugli, A., Zlobec, I., Gunthert, U., Minoo, P., Baker, K., Tornillo, L., Terracciano, L., Jass, J., 2006. Overexpression of the receptor for hyaluronic acid mediated motility is an independent adverse prognostic factor in colorectal cancer. Mod. Pathol. 19, 1302-1309. https://doi.org/10.1038/modpathol.3800648
  49. Luo, Y., Prestwich, G.D., 1999. Synthesis and Selective Cytotoxicity of a Hyaluronic Acid- Antitumor Bioconjugate. Bioconjugate Chem. 10, 755-763. https://doi.org/10.1021/bc9900338
  50. Luo, Y., Ziebell, M., Prestwich, G., 2000. A Hyaluronic Acid-Taxol Antitumor Bioconjugate Targeted to Cancer Cells. Biomacromolecules 1, 208-218. https://doi.org/10.1021/bm000283n
  51. Malmsten, M., 2006. Soft drug delivery systems. Soft Matter 2, 760-769. https://doi.org/10.1039/b608348j
  52. Mohanraj, V.J., Chen, Y., 2007. Nanoparticles-A review. Trop. J. Pharm. Res. 5, 561-573.
  53. Mucci, A., Schenetti, L., Volpi, N., 2000. 1H and 13C nuclear magnetic resonance identification and characterization of components of chondroitin sulfates of various origin. Carbohydr. Polym. 41, 37-45. https://doi.org/10.1016/S0144-8617(99)00075-2
  54. Na, K., Bum Lee, T., Park, K.H., Shin, E.K., Lee, Y.B., Choi, H.K., 2003a. Self-assembled nanoparticles of hydrophobically-modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur. J. Pharm. Sci. 18, 165-173. https://doi.org/10.1016/S0928-0987(02)00257-9
  55. Na, K., Lee, E.S., Bae, Y.H., 2007. Self-organized nanogels responding to tumor extracellular pH: pH-dependent drug release and in vitro cytotoxicity against MCF-7 cells. Bioconjugate Chem 18, 1568-1574. https://doi.org/10.1021/bc070052e
  56. Na, K., Lee, K.H., Bae, Y.H., 2004. pH-sensitivity and pH-dependent interior structural change of self-assembled hydrogel nanoparticles of pullulan acetate/oligo-sulfonamide conjugate. J. Controlled Release 97, 513-525.
  57. Na, K., Park, K.M., Jo, E.A., Lee, K.S., 2006. Self-organized pullulan/deoxycholic acid nanogels: Physicochemical characterization and anti-cancer drug-releasing behavior. Biotechnol. Bioproc. E 11, 262-267. https://doi.org/10.1007/BF02932041
  58. Na, K., Seong Lee, E.S., Bae, Y.H., 2003b. Adriamycin loaded pullulan acetate/sulfonamide conjugate nanoparticles responding to tumor pH: pH-dependent cell interaction, internalization and cytotoxicity in vitro. J. Controlled Release 87, 3-13. https://doi.org/10.1016/S0168-3659(02)00345-0
  59. Nishiyama, N., Bae, Y., Miyata, K., Fukushima, S., Kataoka, K., 2005. Smart polymeric micelles for gene and drug delivery. Drug. Discov. Today 2, 21-26. https://doi.org/10.1016/j.ddtec.2005.05.007
  60. Nishiyama, N., Kataoka, K., 2006. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 112, 630-648. https://doi.org/10.1016/j.pharmthera.2006.05.006
  61. Nobs, L., Buchegger, F., Gurny, R., Allemann, E., 2004. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93, 1980-1992. https://doi.org/10.1002/jps.20098
  62. Normanno, N., Bianco, C., Strizzi, L., Mancino, M.R., Maiello, M., Luca, A., Caponigro, F., Salomon, D.S., 2005. The ErbB receptors and their ligands in cancer: an overview. Curr. Drug Targets 6, 243-257. https://doi.org/10.2174/1389450053765879
  63. Oh, J.K., Drumright, R., Siegwart, D.J., Matyjaszewski, K., 2008. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448-477. https://doi.org/10.1016/j.progpolymsci.2008.01.002
  64. Park, K., Kim, J.H., Nam, Y.S., Lee, S., Nam, H.Y., Kim, K., Park, J.H., Kim, I.S., Choi, K., Kim, S.Y. Kwon I.C., 2007. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J. Controlled Release 122, 305-314. https://doi.org/10.1016/j.jconrel.2007.04.009
  65. Park, W., Kim, K.S., Bae, B.C., Kim, Y.H., Na, K., 2010. Cancer cell specific targeting of nanogels from acetylated hyaluronic acid with low molecular weight. Eur. J. Pharm. Sci. 40, 367-375. https://doi.org/10.1016/j.ejps.2010.04.008
  66. Park, W., Park, S.J., Na, K.,2010. Potential of self-organizing nanogel with acetylated chondroitin sulfate as an anti-cancer drug carrier. Colloids Surf. B. Biointerfaces. 501-508.
  67. Raemdonck, K., Demeester, J., Smedt, S.D., 2009. Advanced nanogel engineering for drug delivery. Soft Matter 5, 707-715. https://doi.org/10.1039/b811923f
  68. Rapoport, N., 2004. Combined cancer therapy by micellar-encapsulated drug and ultrasound. Int. J. Pharm. 277, 155-162. https://doi.org/10.1016/j.ijpharm.2003.09.048
  69. Rapoport, N., 2006. Tumor Targeting by Polymer Assemblies and Ultrasound Activation. MML series 8, 305-362.
  70. Rapoport, N., 2007. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog. Polym. Sci. 32, 962-990. https://doi.org/10.1016/j.progpolymsci.2007.05.009
  71. Rekha, M.R., Sharma, C.P., 2007. Pullulan as a promising biomaterial for biomedical applications: A perspective. Trends Biomater. artif. Organs. 20, 116-121.
  72. RIcKms, E., Brink, N., lactis Dorner, L., 1948. Crystalline vitamin B12. Sci 107. 396-397 https://doi.org/10.1126/science.107.2781.396
  73. Ringsdorf, H., Simon, J., Winnik, F.M., 1992a. Hydrophobically-modified poly (N-isopropylacrylamides) in water: probing of the microdomain composition by nonradiative energy transfer. Macromolecules 25, 5353-5361. https://doi.org/10.1021/ma00046a038
  74. Ringsdorf, H., Simon, J., Winnik, F.M., 1992b. Hydrophobically modified poly (N-isopropylacrylamides) in water: a look by fluorescence techniques at the heat-induced phase transition. Macromolecules 25, 7306-7312. https://doi.org/10.1021/ma00052a036
  75. Ringsdorf, H., Venzmer, J., Winnik, F.M., 1991. Fluorescence studies of hydrophobically modified poly (N-isopropylacrylamides). Macromolecules 24, 1678-1686. https://doi.org/10.1021/ma00007a034
  76. Seetharam, B., Bose, S., Li, N., 1999. Cellular import of cobalamin (Vitamin B-12). J. Nutr. 129, 1761.
  77. Seetharam, B., Li, N., 2000. Transcobalamin II and its cell surface receptor. Vitam. Horm. 59, 337-366. https://doi.org/10.1016/S0083-6729(00)59012-8
  78. Shen, Y., Tang, H., Radosz, M., Van Kirk, E., Murdoch, W.J, 2008. pH-responsive nanoparticles for cancer drug delivery. Method. Mol. Biol. 437, 183. https://doi.org/10.1007/978-1-59745-210-6_10
  79. Soga, O., van Nostrum, C.F., Hennink, W.E., 2004a. Poly (N-(2-hydroxypropyl) methacrylamide mono/di lactate): a new class of biodegradable polymers with tuneable thermosensitivity. Biomacromolecules 5, 818-821. https://doi.org/10.1021/bm049955q
  80. Soga, O., van Nostrum, C.F., Ramzi, A., Visser, T., Soulimani, F., Frederik, P.M, Bomans, P., Hennink, W.E., 2004b. Physicochemical characterization of degradable thermosensitive polymeric micelles. Langmuir 20, 9388-9395. https://doi.org/10.1021/la048354h
  81. Tanaka, T., Fujishima, Y., Hanano, S., Kaneo, Y., 2004. Intracellular disposition of polysaccharides in rat liver parenchymal and nonparenchymal cells. Int. J. Pharm. 286, 9-17. https://doi.org/10.1016/j.ijpharm.2004.07.031
  82. Tannock, I.F., Rotin, D., 1989. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 49, 4373-4384.
  83. Torchilin, V.P., 2006. Multifunctional nanocarriers. Adv. Drug Del. Rev. 58, 1532-1555. https://doi.org/10.1016/j.addr.2006.09.009
  84. van Sluis, R., Bhujwalla, Z.M., Raghunand, N., Ballesteros, P., Alvarez, J., Cerdan, S., Galons, J.P., Gillies, R.J., 1999. In vivo imaging of extracellular pH using 1H MRSI. Magn. Reson. Med. 41, 743-750. https://doi.org/10.1002/(SICI)1522-2594(199904)41:4<743::AID-MRM13>3.0.CO;2-Z
  85. Ward, P.D., Thibeault, S.L., Gray, S.D., 2002. Hyaluronic Acid:: Its Role in Voice. J. Voice 16, 303-309. https://doi.org/10.1016/S0892-1997(02)00101-7
  86. Wong, J.Y., Kuhl, T.L., Israelachvili, J.N., Mullah, N., Zalipsky, S., 1997. Direct measurement of a tethered ligand-receptor interaction potential. Sci 275, 820-822. https://doi.org/10.1126/science.275.5301.820
  87. Xi, K., Tabata, Y., Uno, K., Yoshimoto, M., Kishida, T., Sokawa, Y., Ikada, Y., 1996. Liver targeting of interferon through pullulan conjugation. Pharm. Res. 13, 1846-1850. https://doi.org/10.1023/A:1016037225728
  88. Xin, D., Wang, Y., Xiang, J., 2010. The Use of Amino Acid Linkers in the Conjugation of Paclitaxel with Hyaluronic Acid as Drug Delivery System: Synthesis, Self-Assembled Property, Drug Release, and In Vitro Efficiency. Pharm. Res. 27, 380-389. https://doi.org/10.1007/s11095-009-9997-9
  89. Yang, W.Z., Zhang, Q.Q., Chen, H.L., Li, X.M., Jiang, Q., Chen, M.M, Gao, F.P., Zhang, H.Z, 2008. Preparation and physicochemical characteristics of self-assembled nanoparticles of cholesterol succinate modified pullulan conjugates. Springer, 13-17.
  90. Yao, Q., Hou, S.X, Zhang, X., Zhao, G., Gou, X.J., You, J.Z, 2007. Preparation and characterization of biotinylated chitosan nanoparticles. A.P.S 42, 557.

Cited by

  1. Hydrogels for Protein Delivery vol.112, pp.5, 2012, https://doi.org/10.1021/cr200157d
  2. Tunable self-assembled nanogels composed of well-defined thermoresponsive hyaluronic acid–polymer conjugates vol.1, pp.32, 2013, https://doi.org/10.1039/c3tb20283f