• Title/Summary/Keyword: Targeted next-generation sequencing

Search Result 45, Processing Time 0.025 seconds

Identification of Genetic Causes of Inherited Peripheral Neuropathies by Targeted Gene Panel Sequencing

  • Nam, Soo Hyun;Hong, Young Bin;Hyun, Young Se;Nam, Da Eun;Kwak, Geon;Hwang, Sun Hee;Choi, Byung-Ok;Chung, Ki Wha
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.382-388
    • /
    • 2016
  • Inherited peripheral neuropathies (IPN), which are a group of clinically and genetically heterogeneous peripheral nerve disorders including Charcot-Marie-Tooth disease (CMT), exhibit progressive degeneration of muscles in the extremities and loss of sensory function. Over 70 genes have been reported as genetic causatives and the number is still growing. We prepared a targeted gene panel for IPN diagnosis based on next generation sequencing (NGS). The gene panel was designed to detect mutations in 73 genes reported to be genetic causes of IPN or related peripheral neuropathies, and to detect duplication of the chromosome 17p12 region, the major genetic cause of CMT1A. We applied the gene panel to 115 samples from 63 non-CMT1A families, and isolated 15 pathogenic or likelypathogenic mutations in eight genes from 25 patients (17 families). Of them, eight mutations were unreported variants. Of particular interest, this study revealed several very rare mutations in the SPTLC2, DCTN1, and MARS genes. In addition, the effectiveness of the detection of CMT1A was confirmed by comparing five 17p12-nonduplicated controls and 15 CMT1A cases. In conclusion, we developed a gene panel for one step genetic diagnosis of IPN. It seems that its time- and cost-effectiveness are superior to previous tiered-genetic diagnosis algorithms, and it could be applied as a genetic diagnostic system for inherited peripheral neuropathies.

A newborn girl with harlequin ichthyosis genetically confirmed by ABCA12 analysis

  • Kim, Jihye;Ko, Jung Min;Shin, Seung Han;Kim, Ee-Kyung;Kim, Han-Suk
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.62-66
    • /
    • 2019
  • Harlequin ichthyosis (HI, OMIM #242500) is one of the most severe skin diseases among the autosomal recessive congenital ichthyoses, with high morbidity and mortality, particularly in newborns. Clinically, it is characterized by a typical appearance of generalized, thick, yellowish, hyperkeratotic plates with deep erythematous fissures on the skin. Herein, we present the case of a newborn girl with HI that was genetically confirmed by targeted gene panel analysis. The premature baby was encased in an opaque white membrane with erosion covering the skin of the entire body except the lips, with her hands and feet restricted by the membrane. Humidification, emollient, and retinoic acid treatment were started; the thick ichthyosis gradually peeled off and the underlying skin was only covered with thin scales. Targeted gene panel analysis using next-generation sequencing and validation with Sanger sequencing and quantitative polymerase chain reaction analyses confirmed compound heterozygous mutations of the ABCA12 gene (p.N1380S and a partial gene deletion encompassing exon 9). The parents were carriers for each of the identified mutations. Early recognition of the genetic etiology of congenital ichthyosis can, thus, facilitate genetic counseling for patients and their families.

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

Current insights into inherited bone marrow failure syndromes

  • Chung, Nack-Gyun;Kim, Myungshin
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.8
    • /
    • pp.337-344
    • /
    • 2014
  • Inherited bone marrow failure syndrome (IBMFS) encompasses a heterogeneous and complex group of genetic disorders characterized by physical malformations, insufficient blood cell production, and increased risk of malignancies. They often have substantial phenotype overlap, and therefore, genotyping is often a critical means of establishing a diagnosis. Current advances in the field of IBMFSs have identified multiple genes associated with IBMFSs and their pathways: genes involved in ribosome biogenesis, such as those associated with Diamond-Blackfan anemia and Shwachman-Diamond syndrome; genes involved in telomere maintenance, such as dyskeratosis congenita genes; genes encoding neutrophil elastase or neutrophil adhesion and mobility associated with severe congenital neutropenia; and genes involved in DNA recombination repair, such as those associated with Fanconi anemia. Early and adequate genetic diagnosis is required for proper management and follow-up in clinical practice. Recent advances using new molecular technologies, including next generation sequencing (NGS), have helped identify new candidate genes associated with the development of bone marrow failure. Targeted NGS using panels of large numbers of genes is rapidly gaining potential for use as a cost-effective diagnostic tool for the identification of mutations in newly diagnosed patients. In this review, we have described recent insights into IBMFS and how they are advancing our understanding of the disease's pathophysiology; we have also discussed the possible implications they will have in clinical practice for Korean patients.

A case of Noonan syndrome diagnosed using the facial recognition software (FACE2GENE)

  • Kim, Soo Kyoung;Jung, So Yoon;Bae, Seong Phil;Kim, Jieun;Lee, Jeongho;Lee, Dong Hwan
    • Journal of Genetic Medicine
    • /
    • v.16 no.2
    • /
    • pp.81-84
    • /
    • 2019
  • Clinicians often have difficulties diagnosing patients with subtle phenotypes of Noonan syndrome phenotypes. Facial recognition technology can help in the identification of several genetic syndromes with facial dysmorphic features, especially those with mild or atypical phenotypes. A patient visited our clinic at 5 years of age with short stature. She was administered growth hormone treatment for 6 years, but her growth curve was still below the 3rd percentile. She and her mother had wide-spaced eyes and short stature, but there were no other remarkable features of a genetic syndrome. We analyzed their photographs using a smartphone facial recognition application. The results suggested Noonan syndrome; therefore, we performed targeted next-generation sequencing of genes associated with short stature. The results showed that they had a mutation on the PTPN11 gene known as the pathogenic mutation of Noonan syndrome. Facial recognition technology can help in the diagnosis of Noonan syndrome and other genetic syndromes, especially in patients with mild phenotypes.

Comparison of the Genetic Alterations between Primary Colorectal Cancers and Their Corresponding Patient-Derived Xenograft Tissues

  • Yu, Sang Mi;Jung, Seung-Hyun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.16 no.2
    • /
    • pp.30-35
    • /
    • 2018
  • Patient-derived xenograft (PDX) models are useful tools for tumor biology research and testing the efficacy of candidate anticancer drugs targeting the druggable mutations identified in tumor tissue. However, it is still unknown how much of the genetic alterations identified in primary tumors are consistently detected in tumor tissues in the PDX model. In this study, we analyzed the genetic alterations of three primary colorectal cancers (CRCs) and matched xenograft tissues in PDX models using a next-generation sequencing cancer panel. Of the 17 somatic mutations identified from the three CRCs, 14 (82.4%) were consistently identified in both primary and xenograft tumors. The other three mutations identified in the primary tumor were not detected in the xenograft tumor tissue. There was no newly identified mutation in the xenograft tumor tissues. In addition to the somatic mutations, the copy number alteration profiles were also largely consistent between the primary tumor and xenograft tissue. All of these data suggest that the PDX tumor model preserves the majority of the key mutations detected in the primary tumor site. This study provides evidence that the PDX model is useful for testing targeted therapies in the clinical field and research on precision medicine.

Development of Chloroplast Microsatellite Markers for Invasive Carduus (Asteraceae) between East Asia and North America

  • Jung, Joonhyung;Kim, Changkyun;Do, Hoang Dang Khoa;Yoon, Changyoung;Kim, Joo-Hwan
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.38-38
    • /
    • 2018
  • The genus Carduus (Asteraceae), containing ca. 90 species, is mainly distributed in Eurasia and Africa. Carduus species are one of the most hazardous invasive species, which causes serious environmental threats and biodiversity damages in North America. Thus, the member of Carduus are targeted for classical biological control in this region. Here, we provide the complete cp genome of Carduus crispus using next-generation sequencing technology. The size of cp genomes of C. crispus is 152,342 bp. It shows a typical quadripartite structure, consisting of the large single copy (LSC; 83,254 bp), small single copy (SSC; 18,706 bp), separated by a pair of inverted repeats (IRs; 25,191 bp). It contains 115 unique genes of which 21 genes duplicated in the IR regions. The cpSSR regions of Carduus species were searched through the complete chloroplast genome sequence using a tandem repeat search tool in Geneious with the parameters set to ${\geq}7$ mononucleotide repeats, ${\geq}4$ di- and trinucleotide repeats, and ${\geq}3$ tetra-, penta-, and hexanucleotide repeats. A total of 22 repeat motifs were identified, which may be useful for molecular identification of Korean Carduus species (C. cripus), and providing a guideline for its conservation.

  • PDF

Precision Medicine in Head and Neck Cancer (두경부암에서 정밀의료)

  • Hye-sung Park;Jin-Hyoung Kang
    • Korean Journal of Head & Neck Oncology
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Technological advancement in human genome analysis and ICT (information & communication technologies) brought 'precision medicine' into our clinical practice. Precision medicine is a novel medical approach that provides personalized treatments tailored to each individual by precisely segmenting patient populations, based on robust data including a person's genetic information, disease information, lifestyle information, etc. Precision medicine has a potential to be applied to treating a range of tumors, in addition to non-small cell lung cancer, in which precision oncology has been actively practiced. In this article, we are reviewing precision medicine in head and neck cancer (HNC) with focus on tumor agnostic biomarkers and treatments such as NTRK, MSI-H/dMMR, TMB-H and BRAF V600E, all of which were recently approved by U.S. Food and Drug Administration (FDA).

Wide heterogeneity of congenital myasthenic syndromes: analysis of clinical experience in a tertiary center

  • Cho, Anna;Kim, Soo Yeon;Lee, Jin Sook;Lim, Byung Chan;Kim, Hunmin;Hwang, Hee;Chae, Jong-Hee
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.73-78
    • /
    • 2020
  • Purpose: Congenital myasthenic syndrome (CMS) is a clinically and genetically heterogeneous group of disorders characterized by impaired neuromuscular transmission. This study aims to provide the clue for early diagnosis and improved therapeutic strategies in CMS. Materials and Methods: Through the targeted panel sequencing including twenty CMS causative genes, eleven patients were genetically confirmed and enrolled in this study. A retrospective medical record review was carried out for the clinical and laboratory data analysis. Results: The age of patients ranged from 5 to 23 years, with the median age of 16 years. The peak age at onset of symptoms was the neonatal period. Seven out of the eleven patients were symptomatic at birth. The most commonly reported initial finding was generalized hypotonia with poor sucking and crying. Mean time to accurate diagnosis was 9.3±5.0 years. Total fifteen different variants in seven genes associated with CMS (DOK7, AGRN, RAPSN, CHRNE, COLQ, SLC5A7, and GFPT1) were identified. Conclusion: We describe the clinical and genetic characteristics of CMS patients and treatment outcome in a single tertiary center. High clinical suspicion and timely molecular diagnosis is particularly important for the tailored therapy to maximize clinical improvement in CMS.

Human Milk Oligosaccharide Profiles and the Secretor and Lewis Gene Status of Indonesian Lactating Mothers

  • Verawati Sudarma;Diana Sunardi;Nanis Sacharina Marzuki;Zakiudin Munasir;Asmarinah;Adi Hidayat;Badriul Hegar
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.5
    • /
    • pp.266-276
    • /
    • 2023
  • Purpose: Human milk oligosaccharides (HMOs) may be genetically determined based on the secretor and Lewis status of the mother. This study aims to determine the HMO profile and the secretor and Lewis gene status of Indonesian lactating mothers. Methods: Baseline data of 120 mother-infant pairs between 0-4 months post-partum obtained from a prospective longitudinal study was used. The concentrations of 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'SL), and 6'-sialyllactose (6'SL) were measured. Genetic analysis was performed for mothers using targeted next-generation sequencing and Sanger sequencing. Wild-type AA with the rs1047781 (A385T) polymorphism was categorized as secretor positive, while heterozygous mutant AT was classified as a weak secretor. The presence of rs28362459 (T59G) heterozygous mutant AC and rs3745635 (G508A) heterozygous mutant CT genes indicated a Lewis negative status, and the absence of these genes indicated a positive status. Subsequently, breast milk was classified into various groups, namely Group 1: Secretor+Lewis+ (Se+Le+), Group 2: Secretor-Lewis+ (Se-Le+), Group 3: Secretor+Lewis-(Se+Le-), and Group 4: Secretor-Lewis- (Se-Le-). Data were analyzed using the Mann-Whitney and Kruskal-Wallis rank tests, and a p-value of 0.05 indicated statistical significance. Results: A total of 58.3% and 41.7% of the samples had positive and weak secretor statuses, respectively. The proportion of those in Group 1 was 85%, while 15% were Group 3. The results showed that only 2'FL significantly differed according to the secretor status (p-value=0.018). Conclusion: All Indonesian lactating mothers in this study were secretor positive, and most of them had a Lewis-positive status.