DOI QR코드

DOI QR Code

Human Milk Oligosaccharide Profiles and the Secretor and Lewis Gene Status of Indonesian Lactating Mothers

  • Verawati Sudarma (Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Diana Sunardi (Department of Nutrition, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Nanis Sacharina Marzuki (Eijkman Research Center for Molecular Biology, National Research and Innovation Agency) ;
  • Zakiudin Munasir (Department of Child Health, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Asmarinah (Department of Medical Biology, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital) ;
  • Adi Hidayat (Department of Public Health, Faculty of Medicine, Universitas Trisakti) ;
  • Badriul Hegar (Department of Child Health, Faculty of Medicine, Universitas Indonesia - Dr. Cipto Mangunkusumo General Hospital)
  • Received : 2023.03.23
  • Accepted : 2023.07.27
  • Published : 2023.09.15

Abstract

Purpose: Human milk oligosaccharides (HMOs) may be genetically determined based on the secretor and Lewis status of the mother. This study aims to determine the HMO profile and the secretor and Lewis gene status of Indonesian lactating mothers. Methods: Baseline data of 120 mother-infant pairs between 0-4 months post-partum obtained from a prospective longitudinal study was used. The concentrations of 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'SL), and 6'-sialyllactose (6'SL) were measured. Genetic analysis was performed for mothers using targeted next-generation sequencing and Sanger sequencing. Wild-type AA with the rs1047781 (A385T) polymorphism was categorized as secretor positive, while heterozygous mutant AT was classified as a weak secretor. The presence of rs28362459 (T59G) heterozygous mutant AC and rs3745635 (G508A) heterozygous mutant CT genes indicated a Lewis negative status, and the absence of these genes indicated a positive status. Subsequently, breast milk was classified into various groups, namely Group 1: Secretor+Lewis+ (Se+Le+), Group 2: Secretor-Lewis+ (Se-Le+), Group 3: Secretor+Lewis-(Se+Le-), and Group 4: Secretor-Lewis- (Se-Le-). Data were analyzed using the Mann-Whitney and Kruskal-Wallis rank tests, and a p-value of 0.05 indicated statistical significance. Results: A total of 58.3% and 41.7% of the samples had positive and weak secretor statuses, respectively. The proportion of those in Group 1 was 85%, while 15% were Group 3. The results showed that only 2'FL significantly differed according to the secretor status (p-value=0.018). Conclusion: All Indonesian lactating mothers in this study were secretor positive, and most of them had a Lewis-positive status.

Keywords

Acknowledgement

The authors are grateful to Wyeth Sduenam who provided funding for this project.

References

  1. UNICEF, World Health Organization/UNICEF. Global Breastfeeding Scorecard, 2017. Tracking progress for breastfeeding policies and programmes [Internet]. 2017. [cited 2023 Jan 24]. Available from: https://cdn.who.int/media/docs/default-source/breastfeeding/global-breastfeeding-collective/global-bfscorecard-2017.pdf ?sfvrsn=d5ebb905_5&download=true
  2. Bode L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012;22:1147-62. https://doi.org/10.1093/glycob/cws074
  3. McGuire MK, Meehan CL, McGuire MA, Williams JE, Foster J, Sellen DW, et al. What's normal? Oligosaccharide concentrations and profiles in milk produced by healthy women vary geographically. Am J Clin Nutr 2017;105:1086-100. https://doi.org/10.3945/ajcn.116.139980
  4. Saboor M, Ullah A, Qamar K, Mir A, Moinuddin . Frequency of ABH secretors and non secretors: A cross sectional study in Karachi. Pak J Med Sci 2014;30:189-93.
  5. Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31. https://doi.org/10.1542/peds.2011-1206
  6. Austin S, De Castro C, Benet T, Hou Y, Sun H, Thakkar S, et al. Temporal change of the content of 10 oligosaccharides in the milk of Chinese urban mothers. Nutrients 2016;8:346.
  7. Urashima T, Asakuma S, Leo F, Fukuda K, Messer M, Oftedal OT. The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 2012;3:473S-82S. https://doi.org/10.3945/an.111.001412
  8. Amano J, Osanai M, Orita T, Sugahara D, Osumi K. Structural determination by negative-ion MALDI-QIT-TOFMSn after pyrene derivatization of variously fucosylated oligosaccharides with branched decaose cores from human milk. Glycobiology 2009;19:601-14. https://doi.org/10.1093/glycob/cwp026
  9. Bode L. The functional biology of human milk oligosaccharides. Early Hum Dev 2015;91:619-22. https://doi.org/10.1016/j.earlhumdev.2015.09.001
  10. Leo F, Asakuma S, Fukuda K, Senda A, Urashima T. Determination of sialyl and neutral oligosaccharide levels in transition and mature milks of Samoan women, using anthranilic derivatization followed by reverse phase high performance liquid chromatography. Biosci Biotechnol Biochem 2010;74:298-303. https://doi.org/10.1271/bbb.90614
  11. Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev 2017;75:920-33. https://doi.org/10.1093/nutrit/nux044
  12. Kemenkes RI. Profil Kesehatan Indonesia 2021 [Internet]. 2021. [cited 2023 Feb 5]. Available from: https://www.kemkes.go.id/downloads/resources/download/pusdatin/profil-kesehatan-indonesia/Profil-Kesehatan-2021.pdf
  13. Liben ML. Colostrum: the golden milk for Infants' health. Glob J Intellect Dev Disabil 2017;1:555566.
  14. Wagner EA, Chantry CJ, Dewey KG, Nommsen-Rivers LA. Breastfeeding concerns at 3 and 7 days postpartum and feeding status at 2 months. Pediatrics 2013;132:e865-75. https://doi.org/10.1542/peds.2013-0724
  15. WHO. Infant and young child feeding [Internet]. [cited 2019 Nov 2]. Available from: https://www.who.int/news-room/fact-sheets/detail/infant-and-young-child-feeding
  16. Thurl S, Munzert M, Henker J, Boehm G, Muller-Werner B, Jelinek J, et al. Variation of human milk oligosaccharides in relation to milk groups and lactational periods. Br J Nutr 2010;104:1261-71. https://doi.org/10.1017/S0007114510002072
  17. Fields DA, Demerath EW. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition: analytes in human breast-milk. Pediatr Obes 2012;7:304-12. https://doi.org/10.1111/j.2047-6310.2012.00059.x
  18. Cabrera-Rubio R, Kunz C, Rudloff S, Garcia-Mantrana I, Crehua-Gaudiza E, Martinez-Costa C, et al. Association of maternal secretor status and human milk oligosaccharides with milk microbiota: an observational pilot study. J Pediatr Gastroenterol Nutr 2019;68:256-63. https://doi.org/10.1097/MPG.0000000000002216
  19. Austin S, De Castro CA, Sprenger N, Binia A, Affolter M, Garcia-Rodenas CL, et al. Human milk oligosaccharides in the milk of mothers delivering term versus preterm infants. Nutrients 2019;11:1282.
  20. Azad MB, Robertson B, Atakora F, Becker AB, Subbarao P, Moraes TJ, et al. Human milk oligosaccharide concentrations are associated with multiple fixed and modifiable maternal characteristics, environmental factors, and feeding practices. J Nutr 2018;148:1733-42. https://doi.org/10.1093/jn/nxy175
  21. Steering Committee. The Asia-Pacific perspective: Redefining obesity and its treatment. International Diabetes Institute, 2000:11-2.
  22. Koda Y, Tachida H, Pang H, Liu Y, Soejima M, Ghaderi AA, et al. Contrasting patterns of polymorphisms at the ABO-secretor gene (FUT2) and plasma alpha(1,3)fucosyltransferase gene (FUT6) in human populations. Genetics 2001;158:747-56. https://doi.org/10.1093/genetics/158.2.747
  23. Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB. Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype. J Biol Chem 1995;270:4640-9. https://doi.org/10.1074/jbc.270.9.4640
  24. Kudo T, Iwasaki H, Nishihara S, Shinya N, Ando T, Narimatsu I, et al. Molecular genetic analysis of the human Lewis histo-blood group system. II. Secretor gene inactivation by a novel single missense mutation A385T in Japanese nonsecretor individuals. J Biol Chem 1996;271:9830-7. https://doi.org/10.1074/jbc.271.16.9830
  25. Corvelo TC, De Loiola Rdo S, Aguiar DC, De Matos Gde C, De Brito DC. The Lewis histo-blood group system: molecular analysis of the 59T>G, 508G>A, and 1067T>A polymorphisms in an Amazonian population. PLoS ONE 2013;8:e69908.
  26. Liu TC, Chang JG, Lin SF, Chang WC, Yang TY, Lin CL, et al. Lewis (FUT3) genotypes in Taiwanese, Thai, and Filipino populations. Ann Hematol 2000;79:599-603. https://doi.org/10.1007/s002770000212
  27. Koda Y, Soejima M, Liu Y, Kimura H. Molecular basis for secretor type alpha(1,2)-fucosyltransferase gene deficiency in a Japanese population: a fusion gene generated by unequal crossover responsible for the enzyme deficiency. Am J Hum Genet 1996;59:343-50.
  28. Soejima M, Koda Y. Rapid genotyping of 508G>A (rs3745635) and 1067T>A (rs3894326) of FUT3 by a duplex Eprobe-mediated melting curve analysis. Vox Sang 2022;117:741-5. https://doi.org/10.1111/vox.13251
  29. Chang JG, Yang TY, Liu TC, Lin TP, Hu CJ, Kao MC, et al. Molecular analysis of secretor type alpha(1,2)-fucosyltransferase gene mutations in the Chinese and Thai populations. Transfusion 1999;39:1013-7. https://doi.org/10.1046/j.1537-2995.1999.39091013.x
  30. Henry S, Mollicone R, Fernandez P, Samuelsson B, Oriol R, Larson G. Molecular basis for erythrocyte Le(a+ b+) and salivary ABH partial-secretor phenotypes: expression of a FUT2 secretor allele with an A-->T mutation at nucleotide 385 correlates with reduced alpha(1,2) fucosyltransferase activity. Glycoconj J 1996;13:985-93. https://doi.org/10.1007/BF01053194
  31. Durham SD, Robinson RC, Olga L, Ong KK, Chichlowski M, Dunger DB, et al. A one-year study of human milk oligosaccharide profiles in the milk of healthy UK mothers and their relationship to maternal FUT2 genotype. Glycobiology 2021;31:1254-67. https://doi.org/10.1093/glycob/cwab057
  32. Kunz C, Meyer C, Collado MC, Geiger L, Garcia-Mantrana I, Bertua-Rios B, et al. Influence of gestational age, secretor, and lewis blood group status on the oligosaccharide content of human milk. J Pediatr Gastroenterol Nutr 2017;64:789-98. https://doi.org/10.1097/MPG.0000000000001402
  33. Wang M, Zhao Z, Zhao A, Zhang J, Wu W, Ren Z, et al. Neutral human milk oligosaccharides are associated with multiple fixed and modifiable maternal and infant characteristics. Nutrients 2020;12:826.
  34. Ma L, McJarrow P, Jan Mohamed HJB, Liu X, Welman A, Fong BY. Lactational changes in the human milk oligosaccharide concentration in Chinese and Malaysian mothers' milk. Int Dairy J 2018;87:1-10. https://doi.org/10.1016/j.idairyj.2018.07.015
  35. McJarrow P, Radwan H, Ma L, MacGibbon AKH, Hashim M, Hasan H, et al. Human milk oligosaccharide, phospholipid, and ganglioside concentrations in breast milk from United Arab Emirates mothers: results from the MISC cohort. Nutrients 2019;11:2400.
  36. Menzel P, Vogel M, Austin S, Sprenger N, Grafe N, Hilbert C, et al. Concentrations of oligosaccharides in human milk and child growth. BMC Pediatr 2021;21:481.
  37. Rudloff S, Pohlentz G, Borsch C, Lentze MJ, Kunz C. Urinary excretion of in vivo 13C-labelled milk oligosaccharides in breastfed infants. Br J Nutr 2012;107:957-63. https://doi.org/10.1017/S0007114511004016
  38. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol 2014;80:2889-900. https://doi.org/10.1128/AEM.00342-14
  39. Parker EP, Ramani S, Lopman BA, Church JA, Iturriza-Gomara M, Prendergast AJ, et al. Causes of impaired oral vaccine efficacy in developing countries. Future Microbiol 2018;13:97-118. https://doi.org/10.2217/fmb-2017-0128
  40. Erney RM, Malone WT, Skelding MB, Marcon AA, Kleman-Leyer KM, O'Ryan ML, et al. Variability of human milk neutral oligosaccharides in a diverse population. J Pediatr Gastroenterol Nutr 2000;30:181-92.
  41. Selma-Royo M, Gonzalez S, Gueimonde M, Chang M, Furst A, Martinez-Costa C, et al. Maternal diet is associated with human milk oligosaccharide profile. Mol Nutr Food Res 2022;66:e2200058.
  42. Guo M, Luo G, Lu R, Shi W, Cheng H, Lu Y, et al. Distribution of Lewis and Secretor polymorphisms and corresponding CA19-9 antigen expression in a Chinese population. FEBS Open Bio 2017;7:1660-71. https://doi.org/10.1002/2211-5463.12278
  43. Elwakiel M, Hageman JA, Wang W, Szeto IM, Van Goudoever JB, Hettinga KA, et al. Human milk oligosaccharides in colostrum and mature milk of Chinese mothers: lewis positive secretor subgroups. J Agric Food Chem 2018;66:7036-43. https://doi.org/10.1021/acs.jafc.8b02021
  44. Siziba LP, Mank M, Stahl B, Gonsalves J, Blijenberg B, Rothenbacher D, et al. Human milk oligosaccharide profiles over 12 months of lactation: the Ulm SPATZ health study. Nutrients 2021;13:1973.
  45. Soyyilmaz B, Miks MH, Rohrig CH, Matwiejuk M, Meszaros-Matwiejuk A, Vigsnaes LK. The mean of milk: a review of human milk oligosaccharide concentrations throughout lactation. Nutrients 2021;13:2737.
  46. Lefebvre G, Shevlyakova M, Charpagne A, Marquis J, Vogel M, Kirsten T, et al. Time of lactation and maternal fucosyltransferase genetic polymorphisms determine the variability in human milk oligosaccharides. Front Nutr 2020;7:574459.