• Title/Summary/Keyword: Target spectrum

Search Result 405, Processing Time 0.03 seconds

Type-specific Amplification of 5S rRNA from Panax ginseng Cultivars Using Touchdown (TD) PCR and Direct Sequencing

  • Sun, Hun;Wang, Hong-Tao;Kwon, Woo-Saeng;Kim, Yeon-Ju;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.55-58
    • /
    • 2009
  • Generally, the direct sequencing through PCR is faster, easier, cheaper, and more practical than clone sequencing. Frequently, standard PCR amplification is usually interpreted by mispriming internal or external regions of the target template. Normally, DNA fragments were eluted from the gel using Gel extraction kit and subjected to direct sequencing or cloning sequencing. Cloning sequencing has often troublesome and needs more time to analyze for many samples. Since touchdown (TD) PCR can generate sufficient and highly specific amplification, it reduces unwanted amplicon generation. Accordingly, TD PCR is a good method for direct sequencing due to amplifying wanted fragment. In plants the 5S-rRNA gene is separated by simple spacers. The 5S-rRNA gene sequence is very well-conserved between plant species while the spacer is species-specific. Therefore, the sequence has been used for phylogenetic studies and species identification. But frequent occurrences of spurious bands caused by complex genomes are encountered in the product spectrum of standard PCR amplification. In conclusion, the TD PCR method can be applied easily to amplify main 5S-rRNA and direct sequencing of panax ginseng cultivars.

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.

A Study on the Cathodoluminescence and Structure of Thin Film $ZnGa_2O_4:Mn$ Oxide Phosphor (박막형 $ZnGa_2O_4:Mn$ 산화물 형광체의 음극선루미느센스와 구조적 특성에 관한 연구)

  • Kim, Joo-Han;Holloway Paul H.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.541-546
    • /
    • 2006
  • In this study we have investigated cathodoluminescence (CL) and structural properties of thin film $ZnGa_2O_4:Mn$ oxide phosphor by using field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), photoluminescence (PL), and cathodoluminescence. PL emission peaked at 506 nm was observed from the $ZnGa_2O_4:Mn$ phosphor target and it was attributed to the $^4T_1-^6A_1$ transition in $Mn^{2+}$ ion. The color coordinates of the emission were x = 0.09 and y = 0.67. The $ZnGa_2O_4:Mn$ films showed the excitation spectrum peaked at 294 nm by $Mn^{2+}$ ion absorption. It was found that the higher intensity of CL emission at 505 nm appears to result from the denser and closely-packed structure in $ZnGa_2O_4:Mn$ phosphor films deposited at lower pressures. The CL intensity did not show any systematic dependence on film surface roughness.

Comparison of Physics Model for 600 MeV Protons and 290 MeV·n-1 Oxygen Ions on Carbon in MCNPX

  • Lee, Arim;Kim, Donghyun;Jung, Nam-Suk;Oh, Joo-Hee;Oranj, Leila Mokhtari;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Background: With the increase in the number of particle accelerator facilities under either operation or construction, the accurate calculation using Monte Carlo codes become more important in the shielding design and radiation safety evaluation of accelerator facilities. Materials and Methods: The calculations with different physics models were applied in both of cases: using only physics model and using the mix and match method of MCNPX code. The issued conditions were the interactions of 600 MeV proton and $290MeV{\cdot}n^{-1}$ oxygen with a carbon target. Both of cross-section libraries, JENDL High Energy File 2007 (JENDL/HE-2007) and LA150, were tested in this calculation. In the case of oxygen ion interactions, the calculation results using LAQGSM physics model and JENDL/HE-2007 library were compared with D. Satoh's experimental data. Other Monte Carlo calculations using PHITS and FLUKA codes were also carried out for further benchmarking study. Results and Discussion: It was clearly found that the physics models, especially intra-nuclear cascade model, gave a great effect to determine proton-induced secondary neutron spectrum in MCNPX code. The variety of physics models related to heavy ion interactions did not make big difference on the secondary particle productions. Conclusion: The variations of secondary neutron spectra and particle transports depending on various physics models in MCNPX code were studied and the result of this study can be used for the shielding design and radiation safety evaluation.

Analysis of Interference Protection Criteria for Interoperability of Radar Systems (레이다 시스템 상호 간 운용을 위한 간섭 보호 기준 분석)

  • Kim, Jung;Jung, Jung-Soo;Kwag, Young-Kil;Kim, Jin-Goog;Jeon, Young-Chan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.434-441
    • /
    • 2014
  • Recently, a mutual interference threat has been increasing among the radar systems due to the rapid growth of the military radar operation. In this paper, the radar interference protection criteria is presented for interoperability in terms of the radar coverage and target detection probability in association with the international recommendation on the interference spectrum by ITU-R. The required criteria for the minimum allowable interference is also presented in terms of INR. In order to ensure the maximum detection probability of the radar under the mutual interference situation, only 5 % of detection range loss is allowed for the case of INR of -6 dB, and required SNR is presented at each INR in terms of the detection range and detection probability. This result will be useful for establishing the interference protection criteria in the combined military radar systems.

An Efficient frame size Decision and Resource Allocation Method for Multiuser OFDM/TDD System in Multicell Environment (멀티셀 기반의 다중 사용자 OFDM-TDD 시스템에서 효과적인 프레임 크기 결정과 자원 할당 기법)

  • Keum Seung-Won;Kim Jung-Gon;Shin Kil-Ho;Kim Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.760-768
    • /
    • 2006
  • In this paper, an novel resource allocation scheme is proposed for adaptive multiuser OFDM-TDD systems in multiuser, multicell and frequency-selective time-varying channels. The optimal frame size and mode switching level of each user is determined by maximizing the spectrum efficiency. In multi-cell environment, the allocation scheme must consider the cochannel interference of other cells. The measured SINR is changed in one frame size because the interference is changed. The frame size is determined to consider both the optimal frame size and cochannel user's frame size of other cells. we propose the efficient resource allocation scheme which is satisfied the target BER.

A Study on the E-TDLNN Method for the Behavioral Modeling of Power Amplifiers (전력 증폭기의 Behavioral 모델링을 위한 E-TDLNN 방식에 관한 연구)

  • Cho, Suk-Hui;Lee, Jong-Rak;Cho, Kyung-Rae;Seo, Tae-Hwan;Kim, Byung-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.10
    • /
    • pp.1157-1162
    • /
    • 2007
  • In this paper, E-TDLNN(Expanded-Tapped Delay Line Neural Network) method is suggested to make the model of power amplifier effectively. This method is the one for making the model of power amplifier through the study in neural network to the target value, the measured output spectrum of power amplifier, after adding the external value factor, gate bias, as an invariant input to the TDLNN method which suggested the memory effect of power amplifier effectively. To prove the validity of suggested method, the data at 2 points, 3.45 V and 3.50 V of gate bias range $3.4{\sim}3.6V$ with the 0.01 V step change, are studied and the predicted results at the gate bias 3.40 V, 3.48 V, 3.53 V and 3.60 V shows good coincidence with the measured values.

Expression, Purification and Properties of Shikimate Dehydrogenase from Mycobacterium Tuberculosis

  • Zhang, Xuelian;Zhang, Shunbao;Hao, Fang;Lai, Xuhui;Yu, Haidong;Huang, Yishu;Wang, Honghai
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.624-631
    • /
    • 2005
  • Tuberculosis, caused by Mycobacterium tuberculosis, continues to be one of the main diseases to mankind. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. The shikimate pathway is onsidered as an attractive target for the discovery of novel antibiotics for its essentiality in bacteria and absence in mammalian cells. The Mycobacterium tuberculosis aroE-encoded shikimate dehydrogenase was cloned, expressed and purified. Sequence alignment analysis shows that shikimate dehydrogenase of Mycobacterium tuberculosis exhibit the pattern of G-X-(N/S)-V-(T/S)-X-PX-K, which is highly conserved within the shikimate dehydrogenase family. The recombinant shikimate dehydrogenase spectrum determined by CD spectroscopy showed that the percentages for $\alpha$-helix, $\beta$-sheet, $\beta$-turn, and random coil were 29.2%, 9.3%, 32.7%, and 28.8%, respectively. The enzymatic characterization demonstrates that it appears to be fully active at pH from 9.0 to 12, and temperature $63^{\circ}C$. The apparent Michaelis constant for shikimic acid and $NADP^+$ were calculated to be about $29.5\;{\mu}M$ and $63\;{\mu}M$. The recombinant shikimate dehydrogenase catalyzes the substrate in the presence of $NADP^+$ with an enzyme turnover number of $399\;s^{-1}$. Zymological studies suggest that the cloned shikimate dehydrogenase from M. tuberculosis has a pretty activity, and the work should help in the discovery of enzyme inhibitors and further of possible antimicrobial agents against Mycobacterium tuberculosis.

Effect of Iron(II)-ascorbate Complex on Protein and DNA of Phages (파아지 단백질 및 DNA에 대한 2가철-아스코르빈산착체의 영향)

  • Lho, Il-Hwan;Murata, Akira
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.46-51
    • /
    • 1993
  • The inactivating effect of iron(II)-ascorbate complex (Fe-Asc) on various phages was previously reported. This paper describes the molecular target in the phage virion attacked by Fe-Asc. The effect of Fe-Asc on protein was investigated with bovine serum albumin and the structural protein of phage J1. There were no differences in the SDS-polyacrylamide gel electrophoresis (patterns of these two proteins when either they were treated) with Fe-Asc or not. Also, there were no changes in the amino acid composition and ultraviolet spectrum of the proteins. The effects of Fe-Asc on DNA was investigated with pUC18 DNA, M13mpB DNA and ${\lambda}$ DNA as well as DNA from phage J1. Fe-Asc caused initially nicking of the subsequently form of pUC18 DNA to yield the open circular form and then subsequently the linear form. Strand breaks were also confirmed with M13mp8 DNA and ${\lambda}$ DNA as well as J1 DNA. The results indicate that the strand breaks in phage DNA could be responsible for the inactivation of phages by Fe-Asc.

  • PDF

A comparison of three performance-based seismic design methods for plane steel braced frames

  • Kalapodis, Nicos A.;Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.27-44
    • /
    • 2020
  • This work presents a comparison of three performance-based seismic design methods (PBSD) as applied to plane steel frames having eccentric braces (EBFs) and buckling restrained braces (BRBFs). The first method uses equivalent modal damping ratios (ξk), referring to an equivalent multi-degree-of-freedom (MDOF) linear system, which retains the mass, the elastic stiffness and responds in the same way as the original non-linear MDOF system. The second method employs modal strength reduction factors (${\bar{q}}_k$) resulting from the corresponding modal damping ratios. Contrary to the behavior factors of code based design methods, both ξk and ${\bar{q}}_k$ account for the first few modes of significance and incorporate target deformation metrics like inter-storey drift ratio (IDR) and local ductility as well as structural characteristics like structural natural period, and soil types. Explicit empirical expressions of ξk and ${\bar{q}}_k$, recently presented by the present authors elsewhere, are also provided here for reasons of completeness and easy reference. The third method, developed here by the authors, is based on a hybrid force/displacement (HFD) seismic design scheme, since it combines the force-base design (FBD) method with the displacement-based design (DBD) method. According to this method, seismic design is accomplished by using a behavior factor (qh), empirically expressed in terms of the global ductility of the frame, which takes into account both non-structural and structural deformation metrics. These expressions for qh are obtained through extensive parametric studies involving non-linear dynamic analysis (NLDA) of 98 frames, subjected to 100 far-fault ground motions that correspond to four soil types of Eurocode 8. Furthermore, these factors can be used in conjunction with an elastic acceleration design spectrum for seismic design purposes. Finally, a comparison among the above three seismic design methods and the Eurocode 8 method is conducted with the aid of non-linear dynamic analyses via representative numerical examples, involving plane steel EBFs and BRBFs.