• Title/Summary/Keyword: Target doses

Search Result 240, Processing Time 0.025 seconds

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT (폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발)

  • Yoon, KyoungJun;Kwak, JungWon;Cho, ByungChul;Song, SiYeol;Lee, SangWook;Ahn, SeungDo;Nam, SangHee
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.100-109
    • /
    • 2014
  • In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

EXPRESSION OF PROTEIN KINASE C ISOFORMS IN CHEMICAL CARCINOGEN-INDUCED NEOPLASTIC TRANSFORMATION OF HUMAN EPITHELIAL CELLS (화학적 발암화에 따른 Protein Kinase C의 발현 변화)

  • Byeon, Ki-Jeong;Hong, Lak-Won;Kim, Chin-Soo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.4
    • /
    • pp.295-305
    • /
    • 2001
  • Protein kinase C (PKC) is known to play a pivotal role in neoplastic transformation cells and its high expression is often found in a variety of types of tumors including oral cancer. While PKC is associated with the altered signal transduction pathway of the tumor cells, it is still unclear which isoform is involved in the carcinogenesis process. Since the cellular distributions and the roles of PKC are isoform-specific, it is very important to identify the specific target molecules to improve our understanding of the carcinogenesis processes. Thus, the present study attempted to perform chemical carcinogen-induced neoplastic transformation of human epithelial cells and analyze the specific isoform of PKCs involved in the cellular transformation. The study analyzed overall PKC responses upon MNNG(N-Methyl-N'-nitro-N-nitroso guanidine) exposure with [$^3H$] PDBu binding assay. PKC translocation was observed at high doses of MNNG treatment in the presence of extracellular calcium. Such effects were not observed in the absence of extracellular calcium. Translocational effects with exposure of MNNG was further enhanced in the presence of hydrocortisone. The result suggests that the type of PKC involved may be $Ca^{2+}$-dependent classical isoform and steroid hormone enhances PKC activation. Among cPKC isoforms examined, only $PKC-{\alpha}$ and r showed significant translocation of protein levels from cytosolic fraction to membrane fraction, as analyzed by immunoblot. $PKC-{\varepsilon}$ in nPKC class showed an inch·eased translocation, but other forms in this class did not show the effect. None of isoforms in aPKC class was affected by MNNG treatment. The study demonstrated that there was a certain specificity in the patterns of isoform induction follwong chemical carcinogen exposure and helped identify all the types of PKC isoforms expressed in human epithelial cells. It was revealed that PKC isoforms were activated in an early resonse to chemical carcinogen, suggesting that PKC be associated with carcinogenesis process from an early stage in this particular cell system. The study will contribute to improving our understanding of chemical-induced carcinogenesis in human cells and may provide a scientific basis to introduce the specific PKC inhibitors as an anticancer drug of epithelial cell-origin cancers including oral cancer.

  • PDF

Clinical Application of in Vivo Dosimetry System in Radiotherapy of Pelvis (골반부 방사선 치료 환자에서 in vivo 선량측정시스템의 임상적용)

  • Kim, Bo-Kyung;Chie, Eui-Kyu;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.37-49
    • /
    • 2002
  • The accuracy of radiation dose delivery to target volume is one of the most important factors for good local control and less treatment complication. In vivo dosimetry is an essential QA procedure to confirm the radiation dose delivered to the patients. Transmission dose measurement is a useful method of in vivo dosimetry and it's advantages are non-invasiveness, simplicity and no additional efforts needed for dosimetry. In our department, in vivo dosimetry system using measurement of transmission dose was manufactured and algorithms for estimation of transmission dose were developed and tested with phantom in various conditions successfully. This system was applied in clinic to test stability, reproducibility and applicability to daily treatment and the accuracy of the algorithm. Transmission dose measurement was performed over three weeks. To test the reproducibility of this system, X-tay output was measured before daily treatment and then every hour during treatment time in reference condition(field size; $10 cm{\times} 10 cm$, 100 MU). Data of 11 patients whose pelvis were treated more than three times were analyzed. The reproducibility of the dosimetry system was acceptable with variations of measurement during each day and over 3 week period within ${\pm}2.0%$. On anterior- posterior and posterior fields, mean errors were between -5.20% and +2.20% without bone correction and between -0.62% and +3.32% with bone correction. On right and left lateral fields, mean errors were between -10.80% and +3.46% without bone correction and between -0.55% and +3.50% with bone correction. As the results, we could confirm the reproducibility and stability of our dosimetry system and its applicability in daily radiation treatment. We could also find that inhomogeneity correction for bone is essential and the estimated transmission doses are relatively accurate.

Effects of Glycyrrhiza inflata Batal Extracts on Adipocyte and Osteoblast Differentiation (감초추출물의 지방세포와 조골세포에 대한 분화효과)

  • Seo, Cho-Rong;Byun, Jong Seon;An, Jae Jin;Lee, JaeHwan;Hong, Joung-Woo;Jang, Sang Ho;Park, Kye Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1015-1021
    • /
    • 2013
  • Glycyrrhiza inflata Batal, an important species of licorice, is one of the most widely used medicinal plants for over 4000 years. Glycyrrhiza plant species has been well known for its various therapeutic activities such as anti-inflammatory, anti-allergic, and anti-ulcer. The purpose of this study was to determine the effects of Glycyrrhiza inflata Batal ethanol extracts (GBE) on adipocyte and osteoblast differentiation. Mesenchymal C3H10T1/2 cells were treated with sub-cytotoxic doses of GBE, and its effects on adipocyte differentiation were assessed. We found that GBE dose-dependently increased lipid accumulation and also induced the expression of adipocyte markers, such as $PPAR{\gamma}$ and its target genes, aP2, and adiponectin, in C3H10T1/2 cells. Consistently, similar effects of GBE on lipid accumulation were also observed in preadipocyte 3T3-L1 cells that further supports the pro-adipogenic activities of GBE. We also investigated the effects of GBE on osteoblast differentiation of mesenchymal C3H10T1/2 cells. As a results, we found that GBE increased the activity of alkaline phosphatase in a dose-dependent manner and also promoted the expression of osteoblast markers, such as ALP and RUNX2, during osteoblast differentiation of C3H10T1/2 cells. Similar pro-osteogenic effects of GBE were also observed in preosteoblast MC3T3-E1 cells. Finally, our data show that a major bioactive compound found in Glycyrrhiza inflata Batal, licochalcone A (LA) but not glycyrrhizic acid (GA), can mediate the pro-adipogenic and pro-osteogenic effects of GBE. Taken together, this study provides data to show the possibility of GBE and its bioactive component LA as putative strategies for type 2 diabetes and bone diseases.

A Study on the dose distribution produced by $^{32}$ P source form in treatment for inhibiting restenosis of coronary artery (관상동맥 재협착 방지를 위한 치료에서 $^{32}$ P 핵종의 선원 형태에 따른 선량분포에 관한 연구)

  • 김경화;김영미;박경배
    • Progress in Medical Physics
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • In this study, the dose distributions of a $^{32}$ p uniform cylindrical volume source and a surface source, a pure $\beta$emitter, were calculated in order to obtain information relevant to the utilization of a balloon catheter and a radioactive stent. The dose distributions of $^{32}$ p were calculated by means of the EGS4 code system. The sources are considered to be distributed uniformly in the volume and on the surface in the form of a cylinder with a radius of 1.5 mm and length of 20 mm. The energy of $\beta$particles emitted is chosen at random in the $\beta$ energy spectrum evaluated by the solution of the Dirac equation for the Coulomb potential. Liquid water is used to simulate the particle transport in the human body. The dose rates in a target at a 0.5mm radial distance from the surface of cylindrical volume and surface source are 12.133 cGy/s per GBq (0.449 cGy/s per mCi, uncertainty: 1.51%) and 24.732 cGy/s per GBq (0.915 cGy/s per mCi, uncertainty: 1.01%), respectively. The dose rates in the two sources decrease with distance in both radial and axial direction. On the basis of the above results, the determined initial activities were 29.69 mCi and 1.2278 $\mu$Ci for the balloon catheter and the radioactive stent using $^{32}$ P isotope, respectively. The total absorbed dose for optimal therapeutic regimen is considered to be 20 Gy and the treatment time in the case of the balloon catheter is less than 3 min. Absorbed doses in targets placed in a radial direction for the two sources were also calculated when it expressed initial activity in a 1 mCi/ml volume activity density for the cylindrical volume source and a 0.1 mCi/cm$^2$ area activity density for the surface source. The absorbed dose distribution around the $^{32}$ P cylindrical source with different size can be easily calculated using our results when the volume activity density and area activity density for the source are known.

  • PDF

Fourteen-day Repeated-dose Oral Toxicity Study of the Ethanol Extracts Isolated from Oplopanax elatus in Sprague-Dawley Rat (흰쥐에서 땃두릅 에탈올 추출물의 14일 반복경구토여에 의한 독성시험)

  • Kwon, Hyuck-Se;Kim, Dae-Hwan;Shin, Hyun-Kyung;Yu, Chang-Yeon;Kim, Myong-Jo;Lim, Jung-Dae;Park, Jae-Kun;Kim, Jin-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.470-475
    • /
    • 2007
  • Oplopanax elatus (O. elatus) is a tall deciduous shrub that has traditionally been used for σ eating a variety of ailments such as diabetes, coughling, rheumatism, gastro-intestinal disorders, and wounds. In order to examine the safety of the ethanol extracts of O. elatus, we performed a 14-day repeated-dose toxicity study with Sprague-Dawley rats. The rats were treated with daily doses of the D. elatus ethanol extracts by gavage at 0, 500, 1000, and 2000 mg/kg/day for 14 consecutive days. We recorded clinical signs of toxicity, body weight, hematology, organ weights, gross and histological changes in target organs, and clinical chemistry analysis data for all rats. There were no significant changes in body and organ weights during the experimental period. The hematological analysis and clinical blood chemistry data revealed no toxic effects from the O. elatus ethanol extracts. Pathologically, neither gross abnormalities nor histopathological changes were observed between the control and treated rats of both sexes. Collectively, these data suggest that the ethanol extracts of O. elatus have a high margin of safety.

Clinical Report of 46 Intracranial Tumors with LINAC Based Stereotactic Radiosurgery (선형가속기를 이용한 뇌종양 46예의 뇌정위다방향방사선치료 성적)

  • Yoon Sei C;Suh Tge S;Kim Sung W;Kang Ki M;Kim Yun S;Choi Byung O;Jang Hong S;Choi Kyo H;Kim Moon C;Shinn Kyung S
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.241-247
    • /
    • 1993
  • Between July 1988 and December 1992, we treated 45 patients who had deep seated inoperable or residual and/or recurrent intracranial tumors using LINAC based stereotactic radiosurgery at the Department of Therapeutic Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College. Treated intracranial tumors included pituitary tumors (n=15), acoustic neurinomas (n=8), meningiomas (n=7), gliomas (n=6), craniopharyngiomas (n=4), pinealomas (n=3), hemangioblastomas (n=2), and solitary metastatic tumor from lung cancer (n=1). The dimension of treatment field varied from 0.23 to 42.88 $cm^3\;(mean;\;7.26\;cm^3)$. The maximum tumor doses ranging from 5 to 35.5 Gy (mean; 29.9 Gy) were given, and depended on patients' age, target volume, location of lesion and previous history of irradiation. There were 22 male and 23 female patients. The age was varied from 5 to 74 years of age (a median age; 43 years). The mean duration of follow-up was 35 months (2~55 months). To date, 18 $(39.1\%)$ of 46 intracranial tumors treated with SRS showed absent or decrease of the tumor by serial follow-up CT and/or MRI and 16 $(34.8\%)$ were stationary, e.g. growth arrest. From the view point of the clinical aspects, 34 $(73.9\%)$ of 46 tumors were considered improved status, that is, alive with no evidence of active tumor and 8 $(17.4\%)$ of them were stable, alive with disease but no deterioration as compared with before SRS. Although there showed slight increase of the tumor in size according to follow-up imagings of 4 cases (pituitary tumor 1, acoustic neurinomas 2, pinealoma 1), they still represented clinically stable status. Clinically, two $(4.4\%)$ Patients who were anaplastic astrocytoma (n=1) and metastatic brain tumor (n=1) were worsened following SRS treatment. So far, no serious complications were found after treatment. The minor degree headache which could be relieved by steroid or analgesics and transient focal hair loss were observed in a few cases. There should be meticulous long term follow-up inall cases.

  • PDF

The apoptotic fragment assay in rat peripheral lymphocytes and crypt cells with whole body irradiation with 60Co ϒ-rays and 50 MeV cyclotron fast neutrons (코발트-60 감마선과 50 MeV 싸이크로트론 고속 중성자선에 전신조사된 랫드의 말초 임파구와 음와 세포의 아포토시스 유도를 이용한 생물학적 선량 측정 모델 개발 연구)

  • Kim, Tae-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.203-210
    • /
    • 2001
  • Here, we compared the effectiveness of 50 MeV($p{\to}RBe^+$) cyclotron fast neutrons versus $^{60}Co$ ${\gamma}$-rays by the apoptotic fragment frequency in both rat peripheral lymphocytes and crypt cells to check a radiobiological endpoint. The incidence of apoptotic cell death was increased in all irradiated groups, and radiation at all doses trigger rapid changes in both crypt cells and peripheral lymphocytes. These data suggest that apoptosis may play an important role in homeostasis of damaged radiosensitive target organ by removing damaged cells. The curve of dose-effect relationship for these data of apoptotic fragments frequencies was $y=0.3+(6.512{\pm}0.279)D(r^2=0.975)$ after neutrons, while $y=0.3+(4.435{\pm}0.473)D+(-1.300{\pm}0.551)D^2(r^2=0.988)$ after ${\gamma}$-rays. In addition, $y=3.5+(118.410{\pm}10.325)D+(-33.548{\pm}12.023)D^2(r^2=0.992)$ after ${\gamma}$-rays in rat lymphocytes. A significant dose-response relationship was found between the frequency of apoptotic cell and dose. These data show a trend towards increase of the numbers of apoptotic cells with increasing dose. Dose-response curves for high and low linear energy transfer (LET) radiation modalities in these studies were different. The relative biological effectiveness (RBE) value for crypt cells was 1.919. In addition, there were significant peaks on apoptosis induction at 4 and 6h after irradiation, and the morphological findings of the irradiated groups were typical apoptotic fragments in crypt cells that were hardly observed in the control group. Thus, apoptosis induction in both crypt cells and peripheral lymphocytes could be a useful endpoint of rat model for studying screening test and microdosimetic indicator to evaluate the biological effects of radiation-induced cell damage.

  • PDF

Effects of Green Tea Extract on Acute Ethanol-induced Hepatotoxicity in Rats (녹차추출물이 에탄올 투여에 의한 초기 간 손상에 미치는 영향)

  • Jin, Dong-Chun;Jeong, Seung-Wook;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.3
    • /
    • pp.343-349
    • /
    • 2010
  • The liver is the major target of ethanol toxicity and oxidative stress plays a role in development of alcoholic liver disease. This study was performed to investigate the effects of green tea extracts (GTE) on acute ethanol-induced hepatotoxicity in rats. Experimental animals were divided into 4 groups, control, GTE, ethanol, and GTE+ethanol treatment, with 5 rats in each group. Ethanol (6 g/kg body weight (BW)) and GTE (200 mg/kg BW) were treated by gavage. At 1 hour, 3 hours and 20 days (6 g/kg BW every 2 days for total 10 doses) after ethanol and/or GTE treatments, animals were killed; hepatic tumor necrosis factor-alpha (TNF-$\alpha$) and glutathione level, serum aspartate aminotransferase (AST), serum alanine aminotransferase (ALT), hepatic antioxidant enzymes (SOD, CAT, GPx) activities and hepatic thiobarbituric acid reactive substances (TBARS) were measured. At 1 hour and 3 hours, hepatic TNF-$\alpha$ levels were increased significantly in ethanol group and ethanol+GTE group but that levels was significantly lower in ethanol+GTE group compared with ethanol group. Hepatic glutathione level was decreased by ethanol treatment but GTE prevented the ethanol-induced glutathione decrement. The levels of liver marker enzymes (AST, ALT), liver antioxidant enzymes (SOD, CAT, GPx) and lipid peroxidation marker (TBARS) were not changed in rats of 1 and 3 hours after ethanol treatment. After 20 days, GTE decreased the changes of liver marker enzymes (AST, ALT) activities and TBARS level by ethanol. This study shows that GTE beneficially modulates TNF-$\alpha$ and glutathione levels in liver of ethanol administered rats. The GTE supplementation could be beneficial to liver by decreasing early changes of biomarkers of liver damage caused by ethanol.