• 제목/요약/키워드: Target Tracking Controller

검색결과 84건 처리시간 0.018초

표적상태 추정기를 이용한 항공용 시선 안정화 장치의 영상기반 표적추적 제어기에 관한 연구 (A Study on an Image-Based Target Tracking Controller using a Target States Estimator for Airborne Inertially Stabilized Systems)

  • 김성수;이부환
    • 한국군사과학기술학회지
    • /
    • 제17권5호
    • /
    • pp.703-710
    • /
    • 2014
  • An Image-Based Target Tracker maintains LOS(Line Of Sight) to a target by controlling azimuth and elevation gimbals of an ISS(Inertially Stabilized System). Its controller produces the gimbals commands of the ISS using tracking errors provided by an image tracker. The control performance of the target tracker with PI controller generally used for tracking controller is limited because of bandwidth limitation by time delay yielded by image capture and processing of the image tracker. In this paper, tracking controller using target states estimator is proposed which can enhance the tracking performance under the highly dynamic maneuvering conditions of the ISS and the target. Simulation results show that the proposed method can improve the tracking performance than that with only PI controller.

속도 명령 기반 PID 제어기를 이용한 멀티로터 무인항공기의 표적 자동 추종 시스템 구현 (Implementation of Automatic Target Tracking System for Multirotor UAVs Using Velocity Command Based PID controller)

  • 정현도;고선재;최병조
    • 대한임베디드공학회논문지
    • /
    • 제13권6호
    • /
    • pp.321-328
    • /
    • 2018
  • This paper presents an automatic target tracking flight system using a PID controller based on velocity command of a multirotor UAV. The automatic flight system includes marker based onboard target detection and an automatic velocity command generation replacing manual controller. A quad-rotor UAV is equipped with a camera and an image processing computer to detect the marker in real time and to estimate the relative distance from the target. The marker tracking system consists of PID controller and generates velocity command based on the relative distance. The generated velocity command is used as the input of the UAV's original flight controller. The operation of the proposed system was verified through actual flight tests using a marker on top of a moving vehicle and tracks it to successfully demonstrate its capability using a quad-rotor UAV.

전방향 구동 로봇에서의 비젼을 이용한 이동 물체의 추적 (Moving Target Tracking using Vision System for an Omni-directional Wheel Robot)

  • 김산;김동환
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1053-1061
    • /
    • 2008
  • In this paper, a moving target tracking using a binocular vision for an omni-directional mobile robot is addressed. In the binocular vision, three dimensional information on the target is extracted by vision processes including calibration, image correspondence, and 3D reconstruction. The robot controller is constituted with SPI(serial peripheral interface) to communicate effectively between robot master controller and wheel controllers.

항공기용 추적레이더 시험을 위한 시험장비의 설계 및 제작 (A Design and Fabrication of Test Equipment for Airborne Tracking Radar Test)

  • 윤승구;박승욱;권준범;정만식
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.352-361
    • /
    • 2017
  • This paper proposes a design and fabrication of the test equipment that is implemented as a part of the airborne tracking radar inspection under the environment of indoor simulation. This test equipment provides controlling the operation status of airborne tracking radar and replicating the velocity and range information of target by generating a variety of target signal. This is mainly composed of radar operation controller, target signal generator, horn antenna driving devices. Radar operation controller is able to perform the controlling of radar operation mode and monitoring in real time by serial communication. Target signal generator is generated doppler signal and range delayed signal using virtual target of RF-band. Horn antenna driving devices perform a role of target simulating exercise. In the end, the performance is demonstrated using experiment results of test equipment for airborne tracking radar.

비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어 (Target Tracking Control of a Quadrotor UAV using Vision Sensor)

  • 유민구;홍성경
    • 한국항공우주학회지
    • /
    • 제40권2호
    • /
    • pp.118-128
    • /
    • 2012
  • 본 논문은 쿼드로터형 무인 비행체를 비전센서를 이용한 목표 추적 위치 제어기 설계하였고, 이를 시뮬레이션 및 실험을 통해서 확인하였다. 우선 제어기 설계에 앞서 쿼드로터의 동역학 분석 및 실험데이터를 통한 모델링을 수행하였다. 이때, 모델의 계수들은 실제 비행 데이터를 이용한 PEM(Prediction Error Method)을 이용하여 얻었다. 이 추정된 모델을 바탕으로 LQR(Linear Quadratic Regulator) 기법을 이용한 임의의 목표를 따라가는 위치 제어기를 설계하였으며, 이때 위치 정보는 비전센서의 색 정보를 이용한 Color Tracking기능을 이용하여 쿼드로터와 물체의 상대적인 위치를 얻어내었고, 초음파 센서를 이용하여 고도 정보를 얻어 내었다. 마지막으로 실제 움직이는 물체의 추적 제어 실험을 수행하여 LQR 제어기 성능을 평가하였다.

퍼지 알고리즘을 이용한 비젼 센서의 목표물 추적 제어 (Target Tracking Control of vision sensor using Fuzzy Algorithm)

  • 이홍희;한진영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.583-586
    • /
    • 1995
  • In this paper, a nor fuzzy control algorithm for the target tracking system is proposed, and its characteristics are analyzed and compared with those of the traditional PID controller. Fuzzy rules are generated experimentally using Mamdani's minimum operation and the center of area method. The experimental results prove that the proposed fuzzy algorithm is excellent in our tracking system and its performance is superior to that of the PID controller.

  • PDF

로봇 시스템에 대한 PID 궤적추종 제어기의 자동 성능동조 (Automatic Performance Tuning of PID Trajectory Tracking Controller for Robotic Systems)

  • 최영진
    • 제어로봇시스템학회논문지
    • /
    • 제10권6호
    • /
    • pp.510-518
    • /
    • 2004
  • The PID trajectory tracking controller for robotic systems shows performance limitation imposed by inverse dynamics according to desired trajectory. Since the equilibrium point can not be defined for the control system involving performance limitation, we define newly the quasi-equilibrium region as an alternative for equilibrium point. This analysis result of performance limitation can guide us the auto-tuning method for PID controller. Also, the quasi-equilibrium region is used as the target performance of auto-tuning PID trajectory tracking controller. The auto-tuning law is derived from the direct adaptive control scheme, based on the extended disturbance input-to-state stability and the characteristics of performance limitation. Finally, experimental results show that the target performance can be achieved by the proposed automatic tuning method.

Antenna Control System Using Step Tracking Algorithm with H$_{\infty}$ Controller

  • Cho, Chang-Ho;Lee, Sang-Hyo;Kwon, Tae-Yong;Lee, Cheol
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권1호
    • /
    • pp.83-92
    • /
    • 2003
  • The outdoor antenna servo system is subject to has significant torque disturbances from wind pressures and gusts on the antenna structures, as well as bearing and aerodynamic frictions. This control system should provide a sharp directivity in spite of the environmental disturbances and internal uncertainties. Therefore, the implementation of a real-time controller is necessary for the precise generation of the reference signal and robust tracking performance. In this paper, the discrete-time controller for the quick tracking of a target communication satellite is designed by applying the sampled-data $H_{\infty}$ control theory along with the reference signal generated by an improved conventional step-tracking algorithm. The sampled-data $H_{\infty}$controller demonstrates superior robustness for the longer sampling period when compared with a simple PID controller.

인공신경망을 이용한 병렬로봇의 정밀한 추적제어 (Precise Tracking Control of Parallel Robot using Artificial Neural Network)

  • 송낙윤;조황
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.200-209
    • /
    • 1999
  • This paper presents a precise tracking control scheme for the proposed parallel robot using artificial neural network. This control scheme is composed of three feedback controllers and one feedforward controller. Conventional PD controller and artificial neural network are used as feedback and feedforward controller respectively. A backpropagation learning strategy is applied to the training of artificial neural network, and PD controller outputs are used as target outputs. The PD controllers are designed at the robot dynamics based on inter-relationship between active joints and moving platform. Feedback controllers insure the total stability of system, and feedforward controller generates the control signal for trajectory tracking. The precise tracking performance of proposed control scheme is proved by computer simulation.

  • PDF

UAV-UGV의 협업제어를 위한 향상된 Target Tracking에 관한 연구 (Study on the Improved Target Tracking for the Collaborative Control of the UAV-UGV)

  • 최재영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.450-456
    • /
    • 2013
  • This paper suggests the target tracking method improved for the collaboration of the quad rotor type UAV (Unmanned Aerial Vehicle) and omnidirectional Unmanned Ground Vehicle. If UAV shakes or UGV moves rapidly, the existing method generates a phenomenon that the tracking object loses the tracking target. To solve the problems, we propose an algorithm that can track continually when they lose the target. The proposed algorithm stores the vector of the landmark. And if the target was lost, the control signal was inputted so that the landmark could move continuously to the direction running out. Prior to the experiment, Proportional and integral control were used in 4 motors in order to calibrate the Heading value of the omnidirectional mobile robot. The landmark of UGV was recognized as the camera adhered to UAV and the target was traced through the proportional-integral-derivative control. Finally, the performance of the target tracking controller and proposed algorithm was evaluated through the experiment.