• Title/Summary/Keyword: Tandem cell

Search Result 150, Processing Time 0.028 seconds

Thin Film Amorphous/Bulk Crystalline Silicon Tandem Solar Cells with Doped nc-Si:H Tunneling Junction Layers

  • Lee, Seon-Hwa;Lee, Jun-Sin;Jeong, Chae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.257.2-257.2
    • /
    • 2015
  • In this paper, we report on the 10.33% efficient thin film/bulk tandem solar cells with the top cell made of amorphous silicon thin film and p-type bulk crystalline silicon bottom cell. The tunneling junction layers were used the doped nanocrystalline Si layers. It has to allow an ohmic and low resistive connection. For player and n-layer, crystalline volume fraction is ~86%, ~88% and dark conductivity is $3.28{\times}10-2S/cm$, $3.03{\times}10-1S/cm$, respectively. Optimization of the tunneling junction results in fill factor of 66.16 % and open circuit voltage of 1.39 V. The open circuit voltage was closed to the sum of those of the sub-cells. This tandem structure could enable the effective development of a new concept of high-efficiency and low cost cells.

  • PDF

Improved Carrier Tunneling and Recombination in Tandem Solar Cell with p-type Nanocrystalline Si Intermediate Layer

  • Park, Jinjoo;Kim, Sangho;Phong, Pham duy;Lee, Sunwha;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2020
  • The power conversion efficiency (PCE) of a two-terminal tandem solar cell depends upon the tunnel-recombination junction (TRJ) between the top and bottom sub-cells. An optimized TRJ in a tandem cell helps improve its open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and efficiency (PCE). One of the parameters that affect the TRJ is the buffer layer thickness. Therefore, we investigated various TRJs by varying the thickness of the buffer or intermediate layer (TRJ-buffer) in between the highly doped p-type and n-type layers of the TRJ. The TRJ-buffer layer was p-type nc-Si:H, with a doping of 0.06%, an activation energy (Ea) of 43 meV, an optical gap (Eg) of 2.04 eV, and its thickness was varied from 0 nm to 125 nm. The tandem solar cells we investigated were a combination of a heterojunction with intrinsic thin layer (HIT) bottom sub-cell and an a-Si:H (amorphous silicon) top sub-cell. The initial cell efficiency without the TRJ buffer was 7.65% while with an optimized buffer layer, its efficiency improved to 11.74%, i.e., an improvement in efficiency by a factor of 1.53.

Terminal Configuration and Growth Mechanism of III-V on Si-Based Tandem Solar Cell: A Review

  • Alamgeer;Muhammad Quddamah Khokhar;Muhammad Aleem Zahid;Hasnain Yousuf;Seungyong Han;Yifan Hu;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.442-453
    • /
    • 2023
  • Tandem or multijunction solar cells (MJSCs) can convert sunlight into electricity with higher efficiency (η) than single junction solar cells (SJSCs) by dividing the solar irradiance over sub-cells having distinct bandgaps. The efficiencies of various common SJSC materials are close to the edge of their theoretical efficiency and hence there is a tremendous growing interest in utilizing the tandem/multijunction technique. Recently, III-V materials integration on a silicon substrate has been broadly investigated in the development of III-V on Si tandem solar cells. Numerous growth techniques such as heteroepitaxial growth, wafer bonding, and mechanical stacking are crucial for better understanding of high-quality III-V epitaxial layers on Si. As the choice of growth method and substrate selection can significantly impact the quality and performance of the resulting tandem cell and the terminal configuration exhibit a vital role in the overall proficiency. Parallel and Series-connected configurations have been studied, each with its advantage and disadvantages depending on the application and cell configuration. The optimization of both growth mechanisms and terminal configurations is necessary to further improve efficiency and lessen the cost of III-V on Si tandem solar cells. In this review article, we present an overview of the growth mechanisms and terminal configurations with the areas of research that are crucial for the commercialization of III-V on Si tandem solar cells.

Tandem High-dose Chemotherapy and Autologous Stem Cell Transplantation in Children with Brain Tumors : Review of Single Center Experience

  • Sung, Ki Woong;Lim, Do Hoon;Shin, Hyung Jin
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.393-401
    • /
    • 2018
  • The prognosis of brain tumors in children has improved for last a few decades. However, the prognosis remains dismal in patients with recurrent brain tumors. The outcome for infants and young children in whom the use of radiotherapy (RT) is very limited because of unacceptable long-term adverse effect of RT remains poor. The prognosis is also not satisfactory when a large residual tumor remains after surgery or when leptomeningeal seeding is present at diagnosis. In this context, a strategy using high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) has been explored to improve the prognosis of recurrent or high-risk brain tumors. This strategy is based on the hypothesis that chemotherapy dose escalation might result in improvement in survival rates. Recently, the efficacy of tandem HDCT/auto-SCT has been evaluated in further improving the outcome. This strategy is based on the hypothesis that further dose escalation might result in further improvement in survival rates. At present, the number of studies employing tandem HDCT/auto-SCT for brain tumors is limited. However, results of these pilot studies suggest that tandem HDCT/auto-SCT may further improve the outcome. In this review, we will summarize our single center experience with tandem HDCT/auto-SCT for recurrent or high-risk brain tumors.

The Effects of Growth Temperature and Substrate Tilt Angle on GalnP/GaAs Tandem Solar Cells

  • Jun, Dong-Hwan;Kim, Chang-Zoo;Kim, Hog-Young;Shin, Hyun-Beom;Kang, Ho-Kwan;Park, Won-Kyu;Shin, Ki-Soo;Ko, Chul-Gi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.9 no.2
    • /
    • pp.91-97
    • /
    • 2009
  • The performance of GaInP/GaAs tandem solar cells with AlInP growth temperatures of 680$^{\circ}C$ and 700 $^{\circ}C$ on n-type GaAs (100) substrate with 2$^{\circ}$ and 6$^{\circ}$ tilt angles has been investigated. The series resistance and open circuit voltage of the fabricated tandem solar cells are affected by the substrate tilt angles and the growth temperatures of the window layer when zinc is doped in the tunnel diode. With carbon doping as a p-type doping source in the tunnel diode and the effort of current matching between top and bottom cells, GaInP/GaAs tandem solar cell has been exhibited 25.58% efficiency.

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata;Dutta, Subhajit;Mallem, Kumar;Sanyal, Simpy;Park, Jinjoo;Ju, Minkyu;Cho, Young Hyun;Cho, Eun-Chel;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.6 no.4
    • /
    • pp.109-118
    • /
    • 2018
  • Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

Simulation for improvement of thin firm tandem solar cell-ASA (Tandem Cell 박막태양전지의 효율향상을 위한 시뮬레이션 실험-ASA)

  • Choi, Joong-Ho;Lee, Young-Seok;Heo, Jong-Kyu;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.452-453
    • /
    • 2008
  • pin 두 개의 층으로 이루어진 적층형 박막 태양전지를 이용하여 시뮬레이션 하였다. 각 층별 두께를 조절하여 층별 효율을 측정 하였다. 또한 각 층의 도핑 농도를 조절하여 층별 효율을 측정하였다. 그 후 각각 두 개의 층의 최대효율을 측정하였고 동일한 값으로 두 층이 직렬 연결된 태양전지의 효율을 측정하였다. 그 결과 최대 10.14%로 측정 되었다.

  • PDF

Interlayers of polymer tandem solar cells

  • Kim, Tae-Hui;Kim, Gyeong-Gon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.318-318
    • /
    • 2010
  • We present the effect of interlayers of polymer tandem solar cells on their photovoltaic performance. P-type and n-type interlayers are essential for the series-connection of the subcells and enable to form the tandem cell architecture by the solution processing. In this study, we use PEDOT:PSS, nanocrystalline $TiO_2$, and blends of semiconducting polymers and fullerene derivatives as a hole transporting layer, electron transporting layer, and photoactive layers, respectively. We show that photovoltaic performances of polymer tandem solar cells depending on various PEDOT:PSS layers with the different electric conductivity and the various $TiO_2$ layer thickness.

  • PDF

A study on the characteristic of Dye-sensitized solar cell with mesh structure of counter electrode (Mesh구조의 상대전극을 갖는 염료감응형태양전지의 특성연구)

  • Jang, Jin-Ju;Seo, Hyun-Woong;Son, Min-Kyu;Lee, Kyoung-Jun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.131-133
    • /
    • 2008
  • A serious problem of the 21st century is the supply of energy resources. Reserves of fossil fuels are facing depletion: renewable energy resources must be developed in this era. Dye sensitized solar cell (DSC) has been very economical and easy method to convert solar energy to electricity. Recently a novel tandem cell structure is proposed to improve photocurrent of DSC. To fabricated a tandem cell, the mesh structure of counter electrode is essential for the improvement in transmittance. In this study, we conducted the experiment to get the characteristic of DSC with mesh counter electrode. Under the standard test condition (AM 1.5, 100mW/$cm^2$), we obtained the maximum efficiency of 3.41% and the transmittance of 72% in the DSC with mesh counter electrode.

  • PDF

Tandem Structured Hot Electron-based Photovoltaic Cell with Double Schottky Barriers

  • Lee, Young Keun;Lee, Hyosun;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.310.1-310.1
    • /
    • 2013
  • We show the novel hot electron based-solar energy conversion using tandem structured Schottky diode with double Schottky barriers. In this report, we show the effect of the double Schottky barriers on solar cell performance by enhancing both of internal photoemission and band-to-band excitation. The tandem structured Au/Si diode capped with TiO2 layer as second semiconductor exhibited improved ability for light harvesting. The proposed mechanisms consist of multiple reflections of hot electrons and additional pathway of solar energy conversion due to presence of multiple interfaces between thin gold film and semiconductors. Short-circuit photocurrent measured on the tandem structured Au/Si diodes under illumination of AM1.5 increased by approximately 70% from 3.1% to 5.3% and overall incident photon to electron conversion efficiency (IPCE) was enhanced in visible light, revealing that the concept of the double Schottky barriers have significant potential as novel strategy for light harvesting.

  • PDF