DOI QR코드

DOI QR Code

Terminal Configuration and Growth Mechanism of III-V on Si-Based Tandem Solar Cell: A Review

  • Alamgeer (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Muhammad Quddamah Khokhar (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Muhammad Aleem Zahid (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Hasnain Yousuf (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Seungyong Han (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University) ;
  • Yifan Hu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Youngkuk Kim (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Suresh Kumar Dhungel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Junsin Yi (Interdisciplinary Program in Photovoltaic System Engineering, Sungkyunkwan University)
  • Received : 2023.03.09
  • Accepted : 2023.06.20
  • Published : 2023.09.01

Abstract

Tandem or multijunction solar cells (MJSCs) can convert sunlight into electricity with higher efficiency (η) than single junction solar cells (SJSCs) by dividing the solar irradiance over sub-cells having distinct bandgaps. The efficiencies of various common SJSC materials are close to the edge of their theoretical efficiency and hence there is a tremendous growing interest in utilizing the tandem/multijunction technique. Recently, III-V materials integration on a silicon substrate has been broadly investigated in the development of III-V on Si tandem solar cells. Numerous growth techniques such as heteroepitaxial growth, wafer bonding, and mechanical stacking are crucial for better understanding of high-quality III-V epitaxial layers on Si. As the choice of growth method and substrate selection can significantly impact the quality and performance of the resulting tandem cell and the terminal configuration exhibit a vital role in the overall proficiency. Parallel and Series-connected configurations have been studied, each with its advantage and disadvantages depending on the application and cell configuration. The optimization of both growth mechanisms and terminal configurations is necessary to further improve efficiency and lessen the cost of III-V on Si tandem solar cells. In this review article, we present an overview of the growth mechanisms and terminal configurations with the areas of research that are crucial for the commercialization of III-V on Si tandem solar cells.

Keywords

Acknowledgement

This research was financially supported the by New and Renewable Energy Technology Development Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Korean Ministry of Trade, Industry, and Energy (MOTIE) (Project No.20218520010100 and 20203040010320).

References

  1. M. Yamaguchi, F. Dimroth, N. J. Ekins-Daukes, N. Kojima, and Y. Ohshita, EPJ Photovoltaics, 13, 22 (2022). doi: https://doi.org/10.1051/epjpv/2022020
  2. M. Yamaguchi, K. H. Lee, P. Schygulla, F. Dimroth, T. Takamoto, R. Ozaki, K. Nakamura, N. Kojima, and Y. Ohshita, Energy Power Eng., 13, 413 (2021). doi: https://doi.org/10.4236/epe.2021.1312029
  3. K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, T. Yamaguchi, Y. Ichihashi, T. Mishima, N. Matsubara, T. Yamanishi, T. Takahama, M. Taguchi, E. Maruyama, and S. Okamoto, IEEE J. Photovoltaics, 4, 1433 (2014). doi: https://doi.org/10.1109/jphotov.2014.2352151
  4. L. Yuan and A. Anctil, Proc. 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC) (IEEE, Philadelphia, USA, 2022) p. 1028. doi: https://doi.org/10.1109/pvsc48317.2022.9938923
  5. H. Yao and J. Hou, Angew. Chem., 134, e20220902 (2022). doi: https://doi.org/10.1002/ange.202209021
  6. J. Zhou, Q. Huang, Y. Ding, G. Hou, and Y. Zhao, Nano Energy, 92, 106712 (2022). doi: https://doi.org/10.1016/j.nanoen.2021.106712
  7. C. Gao, D. Du, D. Ding, F. Qiao, and W. Shen, J. Mater. Chem. A, 10, 10811 (2022). doi: https://doi.org/10.1039/d2ta01470j
  8. P. T. Chiu, D. C Law, R. L. Woo, S. B. Singer, D. Bhusari, W. D. Hong, A. Zakaria, J. Boisvert, S. Mesropian, R. R. King, and N. H. Karam, Proc. 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (IEEE, Denver, USA, 2014) p. 0011. doi: https://doi.org/10.1109/pvsc.2014.6924957
  9. F. Dimroth, T.N.D. Tibbits, M. Niemeyer, F. Predan, P. Beutel, C. Karcher, E. Oliva, G. Siefer, D. Lackner, P. Fus-Kailuweit, A. W. Bett, R. Krause, C. Drazek, E. Guiot, J. Wasselin, A. Tauzin, and T. Signamarcheix, IEEE J. Photovoltaics, 6, 343 (2015). doi: https://doi.org/10.1109/jphotov.2015.2501729
  10. K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, and F. Dimroth, IEEE J. Photovoltaics, 3, 1423 (2013). doi: https://doi.org/10.1109/jphotov.2013.2273097
  11. J. Yang, Z. Peng, D. Cheong, and R. Kleiman, IEEE J. Photovoltaics, 4, 1149 (2014). doi: https://doi.org/10.1109/jphotov.2014.2313225
  12. S. Yu, M. Rabelo, and J. Yi, Trans. Electr. Electron. Mater., 23, 327 (2022). doi: https://doi.org/10.1007/s42341-022-00398-5
  13. S. D'Souza, J. Haysom, H. Anis, and K. Hinzer, Proc. 2011 IEEE Electrical Power and Energy Conference (IEEE, Winnipeg, Canada, 2011) p. 57. doi: https://doi.org/10.1109/epec.2011.6070253
  14. K, T. VanSant, A. C. Tamboli, and E. L. Warren, Joule, 5, 514 (2021). doi: https://doi.org/10.1016/j.joule.2021.01.010
  15. P. Schygulla, R. Muller, D. Lackner, O. Hohn, H. Hauser, B. Blasi, F. Predan, J. Benick, M. Hermle, S. W. Glunz, and F. Dimroth, Prog. Photovoltaics: Res. Appl., 30, 869 (2022). doi: https://doi.org/10.1002/pip.3503
  16. H. Schulte-Huxel, D. J. Friedman, and A. C. Tamboli, IEEE J. Photovoltaics, 8, 1370 (2018). doi: https://doi.org/10.1109/jphotov.2018.2855104
  17. S. MacAlpine, D. C. Bobela, S. Kurtz, M. P. Lumb, K. J. Schmieder, J. E. Moore, R. J. Walters, and K. Alberi, J. Photonics Energy, 7, 042501 (2017). doi: https://doi.org/10.1117/1.jpe.7.042501
  18. K. T. VanSant, J. Simon, J. F. Geisz, E. L. Warren, K. L. Schulte, A. J. Ptak, M. S. Young, M. Rienacker, H. Schulte-Huxel, R. Peibst, and A. C. Tamboli, ACS Appl. Energy Mater., 2, 2375 (2019). doi: https://doi.org/10.1021/acsaem.9b00018
  19. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys., 89, 5815 (2001). doi: https://doi.org/10.1063/1.1368156
  20. C. W. Cheng, K. T. Shiu, N. Li, S. J. Han, L. Shi, and D. K. Sadana, Nat. Commun., 4, 1577 (2013). doi: https://doi.org/10.1038/ncomms2583
  21. J. Adams, V. Elarde, A. Hains, C. Stender, F. Tuminello, C. Youtsey, A. Wibowo, and M. Osowski, Proc. 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2 (IEEE, Austin, USA, 2012) p. 1. doi: https://doi.org/10.1109/pvsc-vol2.2012.6656720
  22. B. M. Kayes, L. Zhang, R. Twist, I. K. Ding, and G. S. Higashi, IEEE J. Photovoltaics, 4, 729 (2014). doi: https://doi.org/10.1109/jphotov.2014.2299395
  23. C. A. Sweet, K. L. Schulte, J. D. Simon, M. A. Steiner, N. Jain, D. L. Young, A. J. Ptak, and C. E. Packard, Appl. Phys. Lett., 108, 011906 (2016). doi: https://doi.org/10.1063/1.4939661
  24. M. Akiyama, Y. Kawarada, and K. Kaminishi, Jpn. J. Appl. Phys., 23, L843 (1984). doi: https://doi.org/10.1143/jjap.23.l843
  25. M. Yamaguchi, A. Yamamoto, M. Tachikawa, Y. Itoh, and M. Sugo, Appl. Phys. Lett., 53, 2293 (1988). doi: https://doi.org/10.1063/1.100257
  26. H. Okamoto, Y. Watanabe, Y. Kadota, and Y. Ohmachi, Jpn. J. Appl. Phys., 26, L1950 (1987). doi: https://doi.org/10.1143/jjap.26.l1950
  27. M. Yamaguchi, Y. Ohmachi, T. Oh'hara, Y. Kadota, M. Imaizumi, and S. Matsuda, Prog. Photovoltaics: Res. Appl., 9, 191 (2001). doi: https://doi.org/10.1002/pip.366
  28. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, IEEE Trans. Electron Devices, 52, 1055 (2005). doi: https://doi.org/10.1109/ted.2005.848117
  29. M. R. Lueck, C. L. Andre, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, and S. A. Ringel, IEEE Electron Device Lett., 27, 142 (2006). doi: https://doi.org/10.1109/led.2006.870250
  30. R. M. Sieg, S. A. Ringel, S. M. Ting, S. B. Samavedam, M. Currie, T. Langdo, and E. A. Fitzgerald, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom., 16, 1471 (1998). doi: https://doi.org/10.1116/1.589968
  31. T. J. Grassman, M. R. Brenner, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, Appl. Phys. Lett., 94, 232106 (2009). doi: https://doi.org/10.1063/1.3154548
  32. T. J. Grassman, J. A. Carlin, B. Galiana, L.-M. Yang, F. Yang, M. J. Mills, and S. A. Ringel, Appl. Phys. Lett., 102, 142102 (2013). doi: https://doi.org/10.1063/1.4801498
  33. K. N. Yaung, M. Vaisman, J. Lang, M. L. Lee, Appl. Phys. Lett., 109, 032107 (2016). doi: https://doi.org/10.1063/1.4959825
  34. M. Vaisman, S. Fan, K. N. Yaung, E. Perl, D. Martin-Martin, Z. J. Yu, M. Leilaeioun, Z. C. Holman, and M. L. Lee, ACS Energy Lett., 2, 1911 (2017). doi: https://doi.org/10.1021/acsenergylett.7b00538
  35. M. J. Archer, D. C. Law, S. Mesropian, M. Haddad, C. M. Fetzer, A. C. Ackerman, C. Ladous, R. R. King, and H. A. Atwater, Appl. Phys. Lett., 92, 103503 (2008). doi: https://doi.org/10.1063/1.2887904
  36. F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, and A. W. Bett, IEEE J. Photovoltaics, 4, 620 (2014). doi: https://doi.org/10.1109/jphotov.2014.2299406
  37. K. Tanabe, K. Watanabe, and Y. Arakawa, Sci. Rep., 2, 349 (2012). doi: https://doi.org/10.1038/srep00349
  38. L. Zhao, G. Flamand, Y. Mols, J. Van der Heide, and J. Poortmans, ECS Trans., 27, 1123 (2010). doi: https://doi.org/10.1149/1.3360760
  39. K. T. VanSant, Performance Comparison of III-V-On-Si Tandem Solar Cells in the 2-Terminal, 3-Terminal and 4-Terminal Configurations, Colorado School of Mines (2020).
  40. M. Bosi and C. Pelosi, Prog. Photovoltaics: Res. Appl., 15, 51 (2007). doi: https://doi.org/10.1002/pip.715
  41. J. Li, A. Aierken, Y. Liu, Y. Zhuang, X. Yang, J. H. Mo, R. K. Fan, Q. Y. Chen, S. Y. Zhang, Y. M. Huang, and Q. Zhang, Front. Phys., 8, 631925 (2021). doi: https://doi.org/10.3389/fphy.2020.631925
  42. K. T. VanSant, E. L. Warren, J. F. Geisz, T. R. Klein, S. Johnston, W. E. McMahon, H. Schulte-Huxel, M. Rienacker, R. Peibst, and A. C. Tamboli, Science, 25, 104950 (2022). doi: https://doi.org/10.1016/j.isci.2022.104950
  43. L. Guijiang, W. Jyhchiarng, and H. Meichun, J. Semicond., 31, 082004 (2010). doi: https://doi.org/10.1088/1674-4926/31/8/082004
  44. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, Prog. Photovoltaics: Res. Appl., 18, 346 (2010). doi: https://doi.org/10.1002/pip.1021
  45. K. J. Schmieder, A. Gerger, M. Diaz, Z. Pulwin, C. Ebert, A. Lochtefeld, R. Opila, and A. Barnett. Proc. 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, USA, 2012) p. 968. doi: https://doi.org/10.1109/pvsc.2012.6317764
  46. M. Yamaguchi, K. H. Lee, K. Araki, N. Kojima, and Y. Ohshita, ECS Trans., 69, 11 (2015). doi: https://doi.org/10.1149/06904.0011ecst
  47. R. Cariou, J. Benick, P. Beutel, N. Razek, C. Flotgen, M. Hermle, D. Lackner, S. W. Glunz, A. W. Bett, M. Wimplinger, and F. Dimroth, IEEE J. Photovoltaics, 7, 367 (2016). doi: https://doi.org/10.1109/jphotov.2016.2629840
  48. H. Mizuno, K. Makita, T. Tayagaki, T. Mochizuki, T. Sugaya, and H. Takato, Appl. Phys. Express, 10, 072301 (2017). doi: https://doi.org/10.7567/apex.10.072301
  49. M. Schnabel, H. Schulte-Huxel, M. Rienacker, E. L. Warren, P. F. Ndione, B. Nemeth, T. R. Klein, M.F.A.M. van Hest, J. F. Geisz, R. Peibst, P. Stradins, and A. C. Tamboli, Sustainable Energy Fuels, 4, 549 (2020). doi: https://doi.org/10.1039/c9se00893d
  50. S. Fan, Z. J. Yu, R. D. Hool, P. Dhingra, W. Weigand, M. Kim, E. D. Ratta, B. D. Li, Y. Sun, Z. C. Holman, and M. L. Lee, Cell Rep. Phys. Sci., 1, 100208 (2020). doi: https://doi.org/10.1016/j.xcrp.2020.100208
  51. P. Schygulla, F. Heinz, D. Lackner, and F. Dimroth, Proc. 2020 47th IEEE Photovoltaic Specialists Conference (PVSC) (IEEE, Calgary, Canada, 2020) p. 2716. doi: https://doi.org/10.1109/pvsc45281.2020.9300801
  52. K. Makita, Y. Kamikawa, T. Koida, H. Mizuno, R. Oshima, Y. Shoji, S. Ishizuka, T. Takamoto, and T. Sugaya, Prog. Photovoltaics: Res. Appl., 31, 71 (2023). doi: https://doi.org/10.1002/pip.3609
  53. R. Pandey, S. Bhattarai, K. Sharma, J. Madan, A. K. Al-Mousoi, M.K.A. Mohammed, and M. K. Hossain, ACS Appl. Electron. Mater. (2023). doi: https://doi.org/10.1021/acsaelm.2c01574