DOI QR코드

DOI QR Code

A Brief Study on the Fabrication of III-V/Si Based Tandem Solar Cells

  • Panchanan, Swagata (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Dutta, Subhajit (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Mallem, Kumar (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Sanyal, Simpy (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park, Jinjoo (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Ju, Minkyu (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Young Hyun (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Cho, Eun-Chel (College of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • Received : 2018.09.27
  • Accepted : 2018.11.06
  • Published : 2018.12.31

Abstract

Silicon (Si) solar cells are the most successful technology which are ruling the present photovoltaic (PV) market. In that essence, multijunction (MJ) solar cells provided a new path to improve the state-of-art efficiencies. There are so many hurdles to grow the MJ III-V materials on Si substrate as Si with other materials often demands similar qualities, so it is needed to realize the prospective of Si tandem solar cells. However, Si tandem solar cells with MJ III-V materials have shown the maximum efficiency of 30 %. This work reviews the development of the III-V/Si solar cells with the synopsis of various growth mechanisms i.e hetero-epitaxy, wafer bonding and mechanical stacking of III-V materials on Si substrate. Theoretical approaches to design efficient tandem cell with an analysis of state-of-art silicon solar cells, sensitivity, difficulties and their probable solutions are discussed in this work. An analytical model which yields the practical efficiency values to design the high efficiency III-V/Si solar cells is described briefly.

Keywords

TOGBCQ_2018_v6n4_109_f0001.png 이미지

Fig. 1. III-V compound semiconductors for solar cell applications. Adapted from Ref. [35]

TOGBCQ_2018_v6n4_109_f0002.png 이미지

Fig. 2. Fraction ERE without dislocation $\eta_{r}^{TD}$/$\eta_{r}^{0}$ against threading dislocation densities. Reprinted from [16], with the permission from John Wiley and Sons

TOGBCQ_2018_v6n4_109_f0003.png 이미지

Fig. 3. One sun efficiencies ERE of various junctions. Reprinted from [16], with the permission from John Wiley and Sons

TOGBCQ_2018_v6n4_109_f0004.png 이미지

Fig. 4. Relationship between GaInP/InGaAs/Si 3J cell efficiency and the area ratio ASi/ATop. Adapted from Ref. [10]

TOGBCQ_2018_v6n4_109_f0005.png 이미지

Fig. 5. Difference of potential efficiency with the variation in different fabrication parameters. Reprinted from [22], with the permission from Japan Society of Applied Physics

TOGBCQ_2018_v6n4_109_f0006.png 이미지

Fig. 7. Schematic diagram of GaInP/GaAs//Si triple junction wafer bonded solar cell. Adapted from Ref. [35]

TOGBCQ_2018_v6n4_109_f0007.png 이미지

Fig. 8. I-V curve with mask where the efficiency achieves highest value of 30.0% GaInP/GaAs//Si 3J solar cells (from Ref. [29])

TOGBCQ_2018_v6n4_109_f0008.png 이미지

Fig. 6. (a) Schematic diagram of GaInP/GaAs//Si triple junction direct growth solar cell. Adapted from Ref [35] (b) EQE of a GaInP/GaAs tandem solar cell grown on Si compared with an identical reference structure on GaAs. Adapted from Ref. [9]

TOGBCQ_2018_v6n4_109_f0009.png 이미지

Fig. 9. (a) Schematic diagram of GaInP/GaAs//Si triple junction mechanical bonded solar cell; (b) Transfer matrix optical modelling of absorption in the GaInP/GaAs//Si active solar cell layer with 3 middle cell. Reprinted from [34], with the permission from Springer Nature

Table 1. Efficiencies at different EREs of Si tandem solar cells. Adapted from Ref. [4]

TOGBCQ_2018_v6n4_109_t0001.png 이미지

References

  1. ITRPV, "International Technology Roadmap for Photovoltaic," 2015.
  2. M. Ju, K. Mallem, S. Dutta, N. Balaji, D. Oh, E. C. Cho, Y. H. Cho, Y. Kim, J. Yi, "Influence of small size pyramid texturing on contact shading loss and performance analysis of Ag-screen printed mono crystalline silicon solar cells," Mater. Sci. Semicond. Process., Vol. 85, No. June, pp. 68-75, 2018. https://doi.org/10.1016/j.mssp.2018.05.039
  3. M. Ju, N. Balaji, C. Park, H. T. Thanh Nguyen, J. Cui, D. Oh, M. Jeon, J. Kang, G. Shim, J. Yi, "The effect of small pyramid texturing on the enhanced passivation and efficiency of single c-Si solar cells," RSC Adv., Vol. 6, No. 55, pp. 49831-49838, 2016. https://doi.org/10.1039/C6RA05321A
  4. S. Dutta, S. Chatterjee, K. Mallem, Y. H. Cho, J. Yi, "Control of size and distribution of silicon quantum dots in silicon dielectrics for solar cell application: A review," Renew. Energy, 2018.
  5. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, "Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%," Nat. Energy, Vol. 2, No. 5, 2017.
  6. W. Shockley, H. J. Queisser, "Detailed balance limit of efficiency of p-n junction solar cells," J. Appl. Phys., Vol. 32, No. 3, pp. 510-519, 1961. https://doi.org/10.1063/1.1736034
  7. A. S. Brown, M. A. Green, "Radiative coupling as a means to reduce spectral mismatch in monolithic tandem solar cell stacks theoretical considerations," in Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, pp. 868-871, 2002.
  8. M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, A. W. Y. Ho-Baillie, "Solar cell efficiency tables (version 52)," Prog. Photovoltaics Res. Appl., Vol. 26, No. 7, pp. 427-436, 2018. https://doi.org/10.1002/pip.3040
  9. F. Dimroth, T. Roesener, S. Essig, C. Weuffen, A. Wekkeli, E. Oliva, G. Siefer, K. Volz, T. Hannappel, D. Haussler, W. Jager, A. W. Bett, "Comparison of direct growth and wafer bonding for the fabrication of GaInP/GaAs dual-junction solar cells on silicon," IEEE J. Photovoltaics, Vol. 4, No. 2, pp. 620-625, 2014. https://doi.org/10.1109/JPHOTOV.2014.2299406
  10. J. Yang, Z. Peng, D. Cheong, R. Kleiman, "Fabrication of high- efficiency III-V on silicon multijunction solar cells by direct metal interconnect," IEEE J. Photovoltaics, Vol. 4, No. 4, pp. 1149-1155, 2014. https://doi.org/10.1109/JPHOTOV.2014.2313225
  11. K. Derendorf, S. Essig, E. Oliva, V. Klinger, T. Roesener, S. P. Philipps, J. Benick, M. Hermle, M. Schachtner, G. Siefer, W. Jager, F. Dimroth, "Fabrication of GaInP/GaAs//Si Solar Cells by Surface Activated Direct Wafer Bonding," IEEE J. Photovoltaics, Vol. 3, No. 4, pp. 1423-1428, Oct. 2013. https://doi.org/10.1109/JPHOTOV.2013.2273097
  12. K. Tanabe, K. Watanabe, Y. Arakawa, "III-V/Si hybrid photonic devices by direct fusion bonding," Sci. Rep., Vol. 2, No. 1, p. 349, Dec. 2012. https://doi.org/10.1038/srep00349
  13. R. Cariou, J. Benick, M. Hermle, D. Lackner, S. Glunz, A. W. Bett, F. Dimroth, "Notice of Removal Development of highly-efficient III-V//Si wafer-bonded triple-junction solar cells," in 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), pp. 1-4, 2017.
  14. R. Cariou, J. Benick, F. Feldmann, O. Hohn, H. Hauser, P. Beutel, N. Razek, M. Wimplinger, B. Blasi, D. Lackner, M. Hermle, G. Siefer, S. W. Glunz, A. W. Bett, F. Dimroth, "Author Correction: III-V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration (Nature Energy (2018) DOI: 10.1038/s41560-018-0125-0)," Nat. Energy, Vol. 3, No. 7, p. 606, 2018.
  15. A. C. for A. P. A.-U. I. for A. Photovoltaics, "Australia-US Institute for Advanced Photovoltaics Annual Report 2017," 2017.
  16. K. H. Lee, K. Araki, L. Wang, N. Kojima, Y. Ohshita, M. Yamaguchi, "Assessing material qualities and efficiency limits of III-V on silicon solar cells using external radiative efficiency," 2017 IEEE 44th Photovolt. Spec. Conf. PVSC 2017, pp. 1-3, 2018.
  17. G. Hamon, "III-V / Si tandem solar cells : an inverted metamorphic approach using low temperature PECVD of c-Si (Ge) Gwenaelle Hamon To cite this version : HAL Id : tel-01713283 L' U Niversite P Aris -S Aclay Preparee A L' Ecole Polytechnique Specialite : Physiq," Universite Paris-Saclay, 2018.
  18. G. Wilson, "Building On 35 Years Of Progress - The Next 10 Years of Photovoltaic Research At NREL," p. Purdue University Pioneers in Energy Lecture, 2013.
  19. S. A. Ringel, C. L. Andre, J. Boeckl, M. Gonzalez, M. K. Hudait, D. M. Wilt, E. B. Clark, M. Smith, "Advances in III-V Compounds and Solar Cells Grown on SiGe Substrates," Electr. Eng., No. June, pp. 701-704, 2003.
  20. M. Bosi, C. Pelosi, "The potential of III-V semiconductors as terrestrial photovoltaic devices," Prog. Photovoltaics Res. Appl., Vol. 15, No. 1, pp. 51-68, Jan. 2007. https://doi.org/10.1002/pip.715
  21. E. Veinberg-Vidal, C. Dupre, P. Garcia-Linares, C. Jany, R. Thibon, T. Card, T. Salvetat, P. Scheiblin, C. Brughera, F. Fournel, Y. Desieres, Y. Veschetti, V. Sanzone, P. Mur, J. Decobert, A. Datas, "Manufacturing and Characterization of III-V on Silicon Multijunction Solar Cells," Energy Procedia, Vol. 92, pp. 242-247, 2016. https://doi.org/10.1016/j.egypro.2016.07.066
  22. M. Thway, Z. Ren, Z. Liu, S. J. Chua, A. G. Aberle, T. Buonassisi, I. M. Peters, F. Lin, "Sensitivity analysis for III - V/Si tandem solar cells : A theoretical study," Jpn. J. Appl. Phys., Vol. 56, p. 08MC14, 2017. https://doi.org/10.7567/JJAP.56.08MC14
  23. Z. Ren, H. Liu, Z. Liu, C. S. Tan, A. G. Aberle, T. Buonassisi, I. M. Peters, "The GaAs/GaAs/Si solar cell - Towards current matching in an integrated two terminal tandem," Sol. Energy Mater. Sol. Cells, Vol. 160, No. October 2016, pp. 94-100, 2017. https://doi.org/10.1016/j.solmat.2016.10.031
  24. M. Umeno, H. Shimizu, T. Egawa, T. Soga, T. Jimbo, "First results of AlGaAs/Si monolithic 2-terminal tandem solar cell grown by MOCVD," in The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991, pp. 361-364, 1991.
  25. M.-J. Yang, T. Soga, T. Jimbo, M. Umeno, "High efficiency monolithic GaAs/Si tandem solar cells grown by MOCVD," Proc. 1994 IEEE 1st World Conf. Photovolt. Energy Convers. - WCPEC (A Jt. Conf. PVSC, PVSEC PSEC), Vol. 2, pp. 1847-1850, 1994.
  26. R. R. Lapierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, K. M. A. Rahman, "III-V nanowire photovoltaics: Review of design for high efficiency," Phys. Status Solidi - Rapid Res. Lett., Vol. 7, No. 10, pp. 815-830, 2013. https://doi.org/10.1002/pssr.201307109
  27. S. Essig, F. Dimroth, "Fast Atom Beam Activated Wafer Bonds between n-Si and n-GaAs with Low Resistance," ECS J. Solid State Sci. Technol., Vol. 2, No. 9, pp. Q178-Q181, 2013. https://doi.org/10.1149/2.031309jss
  28. C. L. Andre, J. A. Carlin, J. J. Boeckl, D. M. Wilt, M. A. Smith, A. J. Pitera, M. L. Lee, E. A. Fitzgerald, S. A. Ringel, "Investigations of High-Performance GaAs Solar Cells Grown on Ge-Si/sub 1-x/Ge/sub x/-Si Substrates," IEEE Transactions on Electron Devices, Vol. 52, No. 6. pp. 1055-1060, 2005. https://doi.org/10.1109/TED.2005.848117
  29. S. Essig, J. Benick, M. Schachtner, A. Wekkeli, M. Hermle, F. Dimroth, "Wafer-Bonded GaInP/GaAs//Si Solar Cells With 30% Efficiency Under Concentrated Sunlight," IEEE J. Photovoltaics, Vol. 5, No. 3, pp. 977-981, 2015. https://doi.org/10.1109/JPHOTOV.2015.2400212
  30. L. M. Fraas, G. R. Girard, J. E. Avery, B. A. Arau, V. S. Sundaram, A. G. Thompson, J. M. Gee, "GaSb booster cells for over 30% efficient solar-cell stacks," J. Appl. Phys., Vol. 66, No. 8, pp. 3866-3870, 1989. https://doi.org/10.1063/1.344051
  31. T. Takamoto, E. Ikeda, T. Agui, H. Kurita, T. Tanabe, S. Tanaka, H. Matsubara, Y. Mine, S. Takagishi, M. Yamaguchi, "InGaP/GaAs and InGaAs mechanically-stacked triplejunction solar cells," in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997, Vol. 2, pp. 1031-1034, 1997.
  32. S. Essig, M. A. Steiner, C. Allebe, J. F. Geisz, B. Paviet-Salomon, S. Ward, A. Descoeudres, V. LaSalvia, L. Barraud, N. Badel, A. Faes, J. Levrat, M. Despeisse, C. Ballif, P. Stradins, D. L. Young, "Realization of GaInP/Si Dual-Junction Solar Cells with 29.8% 1-Sun Efficiency," IEEE J. Photovoltaics, Vol. 6, No. 4, pp. 1012-1019, 2016. https://doi.org/10.1109/JPHOTOV.2016.2549746
  33. M. Yamaguchi, K.-H. Lee, K. Araki, N. Kojima, "A review of recent progress in heterogeneous silicon tandem solar cells," J. Phys. D. Appl. Phys., Vol. 51, No. 13, 133002, 2018. https://doi.org/10.1088/1361-6463/aaaf08
  34. S. Essig, C. Allebe, T. Remo, J. F. Geisz, M. A. Steiner, K. Horowitz, L. Barraud, J. S. Ward, M. Schnabel, A. Descoeudres, D. L. Young, M. Woodhouse, M. Despeisse, C. Ballif, A. Tamboli, "Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions," Nat. Energy, Vol. 2, No. 9, 17144, Aug. 2017. https://doi.org/10.1038/nenergy.2017.144
  35. F. Dimroth, "PM2 III-V based Tandem Solar Cells: High efficiency low cost?," pp. 1-158, 2018.