• Title/Summary/Keyword: Tailing effect

Search Result 64, Processing Time 0.021 seconds

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

Evaluation about Contaminant Migration Near Abandoned Mine in Central Region (중부지역에 위치한 폐광산 주변의 오염물질 이동성 평가)

  • Lee, Jong-Deuk;Kim, Tae-Dong;Jeon, Gee-Seok;Kim, Hee-Joung
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.29-36
    • /
    • 2010
  • Several mines including Namil, Solim and Jungbong which are located in the Gyeonggi and Kangwon province have been abandoned and closed since 1980 due to "The promotion policy of mining industry". An enormous amount of mining wastes was disposed without proper treatment, which caused soil pollution in tailing dam and ore-dressing plant areas. However, any quantitative assessment was not performed about soil and water pollution by transporting mining wastes such as acid mine drainage, mine tailing, and rocky waste. In this research, heavy metals in mining wastes were analyzed according to leaching method which used 0.1 N HCl and total solution method which used Aqua-regia to recognize the ecological effect of distance from hot spot. We sampled tailings, rocky wastes and soils around the abandoned mine. Chemical and physical parameters such as pH, electrical conductivity (EC), total organic carbon (TOC), soil texture and heavy metal concentration were analyzed. The range of soil's pH is between 4.3 and 6.4 in the tailing dam and oredressing plant area due to mining activity. Total concentrations of As, Cu, and Pb in soil near ore dressing plant area are 250.9, 249.3 and 117.2 mg/kg respectively, which are higher than any other ones near tailing dam area. Arsenic concentration in tailing dams is 31.0 mg/kg, which is also considered as heavily polluted condition comparing with the remediation required level(RRL) in "Soil environment conservation Act".

Analiysis of Micro-structure of Cement Mortar Using Waste Fine Tailing with Admixture (폐광미를 시멘트 혼화재료로 이용한 경화체의 미세구조분석)

  • Yu, Seung-Wan;An, Yang-Jin;Mun, Kyoung-Ju;Park, Won-Chun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.743-747
    • /
    • 2005
  • In South Korea, about 900 metal mines have been abandoned, and about 88 million-t metal mine wastes have been discarded in recent years. The treatment of the tailings which are the main wastes in the abandoned metal mines becomes a social problem because they cause environmental pollution such as acidic waste water generation, groundwater contamination, and dust generation. Since almost whole quantities of the tailings have disposed by landfill now, the development of effective recycling methods for the tailings are strongly requested. It is expected that the fine tailings obtained by centrifugal separation process among the tailings can be utilized as admixture for cement. The purpose of this study is to evaluate the micro-structure of cement mortar admixed with fine tailing. Various admixtures were made of Fine tailings and 2 Types of OPC, fly-ash and blast furnace slag. The hydration reactivity of cement mortar with FT was examined by Porosity, XRD and SEM morphology analysis. The anolytical result about hardened hydrates shows that waste fine tailing help hydrates none densified due to it,s filling-space, These densified effect is concluded with improving the resistance to attack of cement mortar including waste fine tailing.

  • PDF

A study on the washing remediation of tailing waste and contaminated surrounding soil of a bandoned metal mines (폐금속광산 광미 및 주변 오염토양 세정에 관한 연구)

  • 이동호;박옥현
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.87-101
    • /
    • 1999
  • This study has been carried out to examine the feasibility of washing technique for reducing the heavy metal contamination level of tailing wastes and agricultural soil surrounding abandoned metal mines. Some organic acids with low molecular weight were used as washing solution. Initial contamination levels of copper and lead for some soil samples were found to exceed the standard levels of countermeasure and concern, and those of cadmium to approach the standard level of countermeasure. Experimental results using sequential extraction method revealed that more than half of copper and lead existing in tailing wastes are adsorbed forms available for plants. There are some proportional relationships between metal concentrations determined by using 0.1N HCI solution and those determined by sequential extractions. Citric acid was turned out to be superior to oxalic acid and acetic acid with low molecular weight in washing above three metals. When citric acid is used for washing heavy metals from soil, it is desirable to operate at pH less than 5.5 for better washing effect. Metal removal effect by citric acid solution has been proved to depend upon solution concentration and the mass ratio of solution to soil. Addition of SDS(Sodium Dodecyl Sulfate) to citric acid improved the washing effect of cadmium among three metal most significantly. while copper removal did not change. Washing technique using citric acid for removal of heavy metals from agricultural soil or tailing wastes is recognized to be an effective remediation method.

  • PDF

Removal of Arsenic from Leachate of Tailing using Laboratory-synthesized Zerovalent Iron

  • Kim, Soon-Oh;Jung, Young-Il;Cho, Hyen-Goo;Park, Won-Jeong;Kim, In-Seon
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.1
    • /
    • pp.6-12
    • /
    • 2007
  • Feasibility of laboratory-synthesized zerovalent iron was investigated to remove arsenic from leachates of tailings taken from an Au-Ag abandoned mine. The tailings were seriously contaminated with arsenic, and its potential adverse effect on the ecosystems around the mine seems to be significantly high. Long-term column experiments were conducted for about 3.5 months to evaluate the effectiveness of the synthesized zerovalent iron for removal of arsenic. Over than 95% removal efficiency of As was observed in the zerovalent iron mediated tests. In addition, the XRD data suggest that the corrosion products of ZVI were identified magnetite, maghemite, goethite, and lepidocrocite, all of which support Fe(II) oxidation as an intermediate step in the zerovalent iron corrosion process. The results indicate that arsenic can be removed from the tailing-leachate by the mechanism of coprecipitation and/or adsorption onto those iron oxides formed from ZVI corrosion.

Evaluation of Electrokinetic Remediation of Arsenic Contaminated Soils

  • Kim, Won-Seok;Kim, Soon-Oh;Kim, Kyoung-Woong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.72-75
    • /
    • 2004
  • The potential of electrokinetic (EK) technology has been successfully demonstrated for the remediation of heavy metal contaminated fine-grained soils through laboratory scale and field application studies. Arsenic contamination in soil is a serious problem affecting both site use and groundwater quality. The EK technology was evaluated for the removal of arsenic from two soil samples: kaolinite clay artificially contaminated with arsenic and arsenic-bearing tailing soil taken from the Myungbong (MB) mining area. The effect of cathodic electrolyte on the process was investigated using three different types of electrolyte: deionized water (DIW), potassium phosphate (KH$_2$PO$_4$) and sodium hydroxide (NaOH). The result of experiments on the kaolinite clay shows that the potassium phosphate was most effective in extracting arsenic, probably resulting from anion exchange of arsenic species by phosphate. On the contrary, the sodium hydroxide seemed to be most efficient in removing arsenic from the tailing soil, and it is explained by the fact that sodium hydroxide increased the soil pH and accelerated ionic migration of arsenic species through increase in desorption and dissolution of arsenic species into pore water.

  • PDF

An Experimental Study on Surfactant Enhanced LNAPL Removal Behavior in Saturated Zone (계면활성제를 이용한 포화지층내 저비중 비수용성 유기용매의 제거거동에 관한 연구)

  • 이재원;박규홍;박준범;임경희
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.291-300
    • /
    • 1999
  • Surfactant flushing for enhancing the removal of BTEX from contaminated sand/clay mixtures was investigated. Eight soil columns packed with relatively undisturbed BTEX contaminated soils, were leached with water, methyl alcohol and then flushed with surfactant with or without several additives. Initial concentrations of BTEX mixture range from 278mg/kg to 1975mg/kg. Initial BTEX removal efficiency was 98% when the contaminated soil was flushed with water of 850 pore volumes. Because of tailing effect, water flushing could not remove below 8mg/kg concentrations during the experimental period. Eventually, the most effective surfactant for flushing was turned out to be 4% SOFTANOL(equation omitted)-90 with 3% ethyl alcohol and 3% SXS. In interrupted flow conditions, the removal efficiency was 99.5% with the flushed water of 95 pore volumes. The BTEX mixture removed from the soil columns during the surfactant flushing ranges from 84.5% to 99.5% of the initial amount for both water leaching(850 pore volumes) and surfactant flushing(95-165 pore volumes), respectively. Test results indicated that surfactant flushing could enhance the removal of BTEX mixture from contaminated soils and could reduce the aqueous phase BTEX mixture concentration in leachate.

  • PDF

Numerical analysis of the hyporheic flow effect on solute transport in surface water (혼합대 흐름이 지표수 내 용질거동에 미치는 영향 수치모의 분석)

  • Kim, Jun Song
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This paper performs two-dimensional numerical simulation of surface water-groundwater coupled flow and solute transport to investigate the effect of the hyporheic exchange at the sediment-water interface (SWI) on surface solute transport. For the impermeable bed case in the absence of hyporheic flow, the trapping effect of flow recirculation associated with the ripple bed controls the shape of breakthrough curves (BTCs). However, the permeable bed case with hyporheic flow stimulates the extended tailing of the BTCs more significantly due to the elevated concentration of the BTC tailing resulting from slow hyporheic velocity. Also, the increased bottom pressure at the SWI with an increase in surface velocity shortens the BTC tailing because of increasing hyporheic velocity. These results infer that hyporhiec flow is critically important in predicting solute residence times in surface water.

Inactivation of Ralstonia Solanacearum Using Aquatic Plasma Process (수중 Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Back, Sang-Eun;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • A dielectric barrier discharge (DBD) plasma reactor was investigated for the inactivation of Ralstonia Solanacearum which causes bacterial wilt in aquiculture. The DBD plasma reactor of this study was divided into power supply unit, gas supply unit and plasma reactor. The plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the optimum 1st voltage, 2nd voltage, air flow rate and pH were for 100 V (1st voltage), 15 kV (2nd voltage), 4 L/min, and pH 3, respectively. At a low 1st voltage, shoulder and tailing off phenomena was observed. The shoulder phenomenon was decreased as the increase of 1st voltage. R. Solanacearum disinfection in the lower air flow rate was showed shoulder and tailing off phenomenon because the active species generated less. Under optimum condition, shoulder and tailing off phenomenon was reduced. When the 2nd voltage was less than 7.5 kV, tailing off phenomenon was observed and this was not vanishes even though the increase of the disinfection time. The inactivation efficiency increased as the increase of air flow rate, however, the efficiency decreased when the air flow rate was above 4 L/min. R. Solanacearum disinfection at pH 3 showed somewhat higher than in pH 11. The pH effect of R. Solanacearum deactivation is less than the impact on other factor.

Effect of Pretreatment of Mine Tailings on the Performance of Controlled Low Strength Materials (저강도 고유동 충전재의 성능에 미치는 광미 전처리의 영향)

  • Tafesse, Million;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.26 no.3
    • /
    • pp.32-38
    • /
    • 2017
  • For the massive recycling of mine tailings, which are an inorganic by-product of mining process, in the field of civil engineering, pretreatments to extract heavy metals are required. This study focuses on the use of pre-treated tailings as substitute fillers for controlled low-strength material (CLSM). As a comparative study, untreated tailing, microwave-treated tailing and magnetic separated with microwaved tailing were used in this study. Cement contents amounting to 10%, 20% and 30% by the weight of the tailings were designed. Both compressive strength and flowability for all types of mixture were satisfied with the requirements of the American Concrete Institute (ACI) Committee 229, i.e., 0.3-8.3 MPa of compressive strength and longer than 200 mm flowability. Furthermore, all mixtures showed settlements less than 1% by volume of the mix.