• Title/Summary/Keyword: TYRP2

Search Result 16, Processing Time 0.022 seconds

Inhibitory Effects of Alveopora japonica Extract on Melanin Synthesis (거품돌산호 추출물의 멜라닌 합성 억제 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.3
    • /
    • pp.143-148
    • /
    • 2021
  • This study was performed to elucidate the inhibitory effects of Alveopora japonica extract on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of A. japonica extract on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR show that A. japonica extract decrease the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that A. japonica extract decrease melanin production in B16F10 cells. These results demonstrate the whitening effects of A. japonica extract on B16F10 cells; thus, A. japonica extract is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of A. japonica extract. Such research will benefit not only cosmetics, but also the health food and medical industries.

Inhibitory Effects of 6,8-diprenylorobol on Melanin Synthesis (6,8-Diprenylorobol의 멜라닌 합성 억제 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2021
  • This study was performed to elucidated the inhibitory effects of 6,8-diprenylorobol on melanin synthesis by measuring the levels of cell viability, mRNA expression, tyrosinase activity, and melanin production in the B16F10 cell line. The effects of 6,8-diprenylorobol on tyrosinase-related protein 1 (TYRP1), TYRP2, tyrosinase (TYR), and microphthalmia-associated transcription factor (MITF) mRNA expression levels and melanin content were determined. Quantitative real-time RT-PCR shows that 6,8-diprenylorobol decreases the mRNA expression levels of TYRP1, TYRP2, TYR, and MITF in B16F10 cell line, resulting in lower levels of melanin production compared to α-MSH-treated B16F10 cells. Tyrosinase activity assays reveal that 6,8-diprenylorobol decreases melanin production in B16F10 cells. These results demonstrate the whitening effects of 6,8-diprenylorobol on B16F10 cells; thus, 6,8-diprenylorobol is a potent ingredient for skin whitening. Further research is needed on the mechanism of action of 6,8-diprenylorobol. Such research will benefit not only cosmetics, but also the health food and medical industries.

Whitening Effects of Anthricin on B16F10 Cells (B16F10 세포에서 Anthricin의 미백 효능)

  • Shim, Joong Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.1
    • /
    • pp.13-18
    • /
    • 2021
  • This study was performed to clarify the whitening effects of anthricin on the B16F10 cell line. In order to elucidate the whitening effects of anthricin on the B16F10 cell line, cell viability, messenger ribonucleic acid (mRNA) expressions, tyrosinase activity assay, and melanin production assay were measured. The effects of anthricin on tyrosinase-related protein 1(TYRP1)/TYRP2/tyrosinase (TYR)/microphthalmia-associated transcription factor (MITF) mRNA expressions and melanin content were determined. Quantitative real-time RT-PCR showed that anthricin decreased the mRNA expression level of TYRP1/TYRP2/TYR/MITF genes and melanin production contents than α-MSH-treated B16F10 cells. The tyrosinase activity assay revealed that anthricin decreased the melanin production on the B16F10 cells. These data show that anthricin increases the whitening effects on the B16F10 cells; thus, anthricin is a potent ingredient for skin whitening. Thus, further research on the mechanism of action of anthricin for the development of not only cosmetics, but also healthy food and medicine should be investigated.

Substantial Effect of Melanin Influencing Factors on In vitro Melanogenesis in Muzzle Melanocytes of Differently Colored Hanwoo

  • Amna, Touseef;Park, Kyoung-Mi;Cho, In-Kyung;Choi, Tae-Jeong;Lee, Seung-Soo;Seo, Kang-Seok;Hwang, In-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1029-1037
    • /
    • 2012
  • The present study was designed to investigate the effect of ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH), nitric oxide (NO) and L-cysteine on melanin production and expression of related genes MC1R, Tyr, Tyrp-1 and Tyrp-2 in muzzle melanocytes of differently colored three native Hanwoo cattle. Muzzle samples were taken from black, brindle and brown Hanwoo and purified melanocytes were cultured with ${\alpha}$-MSH, nitric oxide and L-cysteine at 100 nM, $50{\mu}M$ and 0.07 mg/ml of media respectively. The amounts of total melanin, eumelanin and mRNA expression at Tyr, Tyrp-1, Tyrp-2 and MC1R levels were quantified. ${\alpha}$-MSH and nitric oxide significantly increased (p<0.05) the amount of total melanin in black and brindle whereas eumelanin production in brown Hanwoo muzzle melanocytes. On the contrary, L-cysteine greatly (p<0.05) depressed the eumelanin production in black color but increased in brown. Simultaneously, up regulation of Tyr by nitric oxide and ${\alpha}$-MSH and down regulation of Tyr, Tyrp-2 and MC1R genes by L-cysteine were observed in muzzle melanocytes of all three phenotypes. The results of this study revealed nitric oxide and ${\alpha}$-MSH contribute hyper-pigmentation by enhancing eumelanogenesis whereas L-cysteine contributes to pheomelanin production in different colored Hanwoo muzzle melanocytes.

Investigation of Coat Color Candidate Genes in Korean Cattle(Hanwoo) (한우에서 모색관련 유전자 변이에 관한 연구)

  • Do, K.T.;Shin, H.Y.;Lee, J.H.;Kim, N.S.;Park, E.W.;Yoon, D.H.;Kim, K.S.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.711-718
    • /
    • 2007
  • Most cattle breeds have a coat color pattern that is characteristic for the breed. Korean cattle(Hanwoo) has a coat color ranging from yellowish brown to dark brown including a red coat color. Variation in the Hanwoo coat color is likely to be the effects of modified genes segregating within the Hanwoo breed. MC1R encoded by the Extension(E) locus was almost fixed with recessive red e allele in the Hanwoo, but other gene(s) might be affecting the variation of the Hanwoo coat color into yellowish to red brown. We have analyzed a segregation of coat color in the F2 families generated from two Hanwoo bulls(yellowish brown) mated to six F1 dams(black) derived from Hanwoo and Holstein crosses. Segregation of coat color in the offspring found a ratio of 1(yellowish brown) : 1(black) and this ratio indicates that a single gene may play a major role for the Hanwoo coat color. We further investigated SNPs in MC1R, ASIP and TYRP1 loci to determine genetic cause of the Hanwoo coat color. Several polymorphisms within ASIP intron 2 and TYRP1 exons were found but not conserved within the Hanwoo population. However, the segregation of the MC1R e allele was completely associated with the Hanwoo coat color. Based on this information, it is clear that the MC1R e allele is mainly responsible for the yellowish red Hanwoo coat color. Further study is warrant to identify possible genetic interaction between MC1R e allele and other coat color related gene(s) for the variation of Hanwoo coat color from yellowish brown to dark brown. (Key words : Hanwoo, Coat color, SNP, MC1R, ASIP, TYRP1)

A Study on Melanin Reduction through Autophagy by 2'-Fucosyllactose (2'-푸코실락토오스의 자가포식을 통한 멜라닌 감소 연구)

  • Jung, So Young;Yoo, Han Jun;Heo, Hyojin;Lee, So Min;Brito, Sofia;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Bin, Bum-Ho;Lee, Mi-Gi;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.2
    • /
    • pp.105-112
    • /
    • 2022
  • 2'-fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide (HMO) present in breast milk, promoting the growth of beneficial microorganisms in the gut and aiding in the relief of allergic and inflammatory reactions. In this study, the anti-melanogenic effects of 2'-FL, and its potential for application in whitening cosmetics, were evaluated. MTT assay was performed on MNT-1 cells, human-derived melanocytes. 2'-FL was treated and replaced at 48 h intervals for 7 days, and it was confirmed that there was no cytotoxicity at 20 g/L or less, while a 40% reduction in melanin production was also observed. Western blot analysis of TYR and TYRP1, factors involved in melanogenesis, revealed that 2'-FL treatment reduced their expression levels. In addition, 2'-FL application and observation of the autophagy marker microtubule-associated protein 1 light chain 3 (LC3) revealed it was converted from LC3-I to LC3-𝚷, indicating increased autophagy. Likewise, confocal microscopy revealed an increase in LC3 puncta after 2'-FL treatment. Therefore, it is suggested that 2'-FL-mediated activation of autophagy reduces melanogenesis by inhibiting the expression levels of TYR and TYRP1 proteins. In conclusion, it has been confirmed that 2'-FL induces autophagy and suppresses melanin production, so its potential as a whitening cosmetic material is expected.

Expression of Coat Color Associated Genes in Korean Brindle Cattle by Microarray Analysis

  • Lee, Hae-Lee;Park, Jae-Hee;Kim, Jong Gug
    • Journal of Embryo Transfer
    • /
    • v.30 no.2
    • /
    • pp.99-107
    • /
    • 2015
  • The aim of the present study was to identify coat color associated genes that are differentially expressed in mature Korean brindle cattle (KBC) with different coat colors and in Hanwoo cows. KBC calves, before and after coat color appearance, were included. Total cellular RNA was isolated from the tail hair cells and used for microarray. The number of expressed coat color associated genes/probes was 5813 in mature KBC and Hanwoo cows. Among the expressed coat color associated genes/probes, 167 genes were the coat color associated genes listed in the Gene card database and 125 genes were the pigment and melanocyte genes listed in the Gene ontology_bovine database. There were 23 genes/probes commonly listed in both databases and their expressions were further studied. Out of the 23 genes/probes, MLPH, PMEL, TYR and TYRP1 genes were expressed at least two fold higher (p<0.01) levels in KBC with brindle color than either Hanwoo or KBC with brown color. TYRP1 expression was 22.96 or 19.89 fold higher (p<0.01) in KBC with brindle color than either Hanwoo or KBC with brown color, respectively, which was the biggest fold difference. The hierarchical clustering analysis indicated that MLPH, PMEL, TYR and TYRP1 were the highly expressed genes in mature cattle. There were only a few genes differentially expressed after coat color appearance in KBC calves. Studies on the regulation and mechanism of gene expression of highly expressed genes would be next steps to better understand coat color determination and to improve brindle coat color appearance in KBC.

Inhibitory Effects on Melanogensis of Scrophularia koraiensis Nakai in Melanocytes

  • So-Yeon Han;Hye-Jeong Park;Da-Yoon Lee;Seo-Yoon Park;Jun-Hwan Jeong;Yoon-Jae Kwon;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2022.09a
    • /
    • pp.110-110
    • /
    • 2022
  • Scrophularia koraiensis Nakai (S. koraiensis) has used its roots as traditional herbal medicine. Some research is reported to be effective in allergic inflammation and osteoporosis. In a present study, we conducted to investigate the bioactivity of the ethanol extract of S. koraiensis (ESK) on the inhibition of melanogenesis and the apoptosis of melanocytes. We analyzed Harpagoside of ESK by using LCMS and HPLC-PDA and investigated the regulation of ESK on reactive oxygen species. Also, the expressions of melanin synthesis-related factors and apoptosis-related factors were confirmed. As a result, the quantification results of quercetin and rutin in ESK were 77.2 and 7.4 mg/g. IC50 on DPPH and ABTS radical scavenging activity is 33.1 and 9.5 ug/mL. ESK attenuated not only the expression of tyrosinase, TYRP-1, TYRP-2, and MITF in melanogenesis. It is thought that ESK may be effective in the inhibition of melanogenesis through MAPK cell signaling pathway in melanocytes. These study results suggest that ESK has the ability to inhibit melanin production and induce apoptosis.

  • PDF

Inhibitory Effect of Angelica keiskei Extracts on Melanogenesis (신선초 추출물의 멜라닌 생성 억제활성)

  • Son, Hyeong-U;Nam, Dong-Yoon;Kim, Min-Ah;Cha, Yong-Su;Kim, Jong-Myung;Shin, Yong-Kyu;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.18 no.6
    • /
    • pp.998-1001
    • /
    • 2011
  • Angelica keiskei is a perennial herb belonging to the Umbelliferae family. In this study, the whitening effect of A. keiskei extracts was examined through melanogenesis and tyrosinase inhibitory assays. The ethanol extract (50%) significantly inhibited tyrosinase in a concentration-dependent manner. RT-PCR revealed that the extract exhibited decreased expression of tyrosinase, tyrosinase-related protein-1, tyrosinase-related protein-2, and melanocyte-inducing transcription factor. These results suggest that the extract can be used as an ingredient for the development of cosmeceuticals.

Relation of Expression Levels of Melanin Synthesis Genes according to the MC1R Genotypes with the Coat Color Patterns in Hanwoo, Jeju Black Cattle and Holstein (한우와 제주흑우, 홀스타인에서 MC1R 유전자형에 따른 melanin 생합성 유전자들의 발현수준과 모색 출현양상의 관계)

  • Lee, Sung-Soo;Yang, Young-Hoon;Cho, In-Cheol;Kim, Nam-Young;Ko, Moon-Suck;Jung, Ha-Yeon;Han, Sang-Hyun
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.384-389
    • /
    • 2009
  • This study was carried out to elucidate the relation between expression levels of three melanin synthesis genes (Tyrosinase, Tyrosinase-related protein 1 and Dopachrome tautomerase) according to the Melanocortin-1 receptor genotypes with coat color patterns in Hanwoo cattle, Jeju black cattle and Holsteins. Using real-time semiquantitative reverse transcription-PCR assay (RT-PCR), the expression levels of these three genes were analyzed in skin tissues from four representative coat colored areas: yellowish-brown from MC1R e/e Hanwoo, wild type black from $E^+/E^+$ Jeju black cattle (JBC), and dominant black and white pied regions from $E^D/E^D$ Holstein. The TYR, TYRP1 and DCT genes showed higher expression levels of 4.5, 2.3 and 2.5 times higher in the black skin area of Holsteins than those of from JBC, respectively (p<0.001). In addition, the expression levels of these three genes from JBC were significantly higher than those from Hanwoo cattle (p<0.001). These results show that coat color phenotypes in Hanwoo cattle, JBC and Holsteins is directly correlated with TRY, TYRP1 and DCT transcription levels, which probably reflected involvement with MC1R genotypes; e/e in Hanwoo, $E^+/E^+$ in JBC and $E^D/E^D$ in Holsteins. Consequently, this study suggested that the status of MC1R protein may not only induce the transcription activities of a series of TYR and its related genes responsible for melanin synthesis, but also determine the levels of total melanin contents in bovine skin.