DOI QR코드

DOI QR Code

Relation of Expression Levels of Melanin Synthesis Genes according to the MC1R Genotypes with the Coat Color Patterns in Hanwoo, Jeju Black Cattle and Holstein

한우와 제주흑우, 홀스타인에서 MC1R 유전자형에 따른 melanin 생합성 유전자들의 발현수준과 모색 출현양상의 관계

  • 이성수 (농촌진흥청 국립축산과학원) ;
  • 양영훈 (제주대학교 동물자원학과) ;
  • 조인철 (농촌진흥청 국립축산과학원) ;
  • 김남영 (농촌진흥청 국립축산과학원) ;
  • 고문석 (농촌진흥청 국립축산과학원) ;
  • 정하연 (농촌진흥청 국립축산과학원) ;
  • 한상현 (농촌진흥청 국립축산과학원)
  • Published : 2009.03.31

Abstract

This study was carried out to elucidate the relation between expression levels of three melanin synthesis genes (Tyrosinase, Tyrosinase-related protein 1 and Dopachrome tautomerase) according to the Melanocortin-1 receptor genotypes with coat color patterns in Hanwoo cattle, Jeju black cattle and Holsteins. Using real-time semiquantitative reverse transcription-PCR assay (RT-PCR), the expression levels of these three genes were analyzed in skin tissues from four representative coat colored areas: yellowish-brown from MC1R e/e Hanwoo, wild type black from $E^+/E^+$ Jeju black cattle (JBC), and dominant black and white pied regions from $E^D/E^D$ Holstein. The TYR, TYRP1 and DCT genes showed higher expression levels of 4.5, 2.3 and 2.5 times higher in the black skin area of Holsteins than those of from JBC, respectively (p<0.001). In addition, the expression levels of these three genes from JBC were significantly higher than those from Hanwoo cattle (p<0.001). These results show that coat color phenotypes in Hanwoo cattle, JBC and Holsteins is directly correlated with TRY, TYRP1 and DCT transcription levels, which probably reflected involvement with MC1R genotypes; e/e in Hanwoo, $E^+/E^+$ in JBC and $E^D/E^D$ in Holsteins. Consequently, this study suggested that the status of MC1R protein may not only induce the transcription activities of a series of TYR and its related genes responsible for melanin synthesis, but also determine the levels of total melanin contents in bovine skin.

본 연구는 한우, 제주흑우, Holstein에서 모색 발현 양상과 MC1R 유전자형의 분포에 따라 melanin 합성에 핵심적인 과정에 참여하는 3 가지 유전자(TYR, TYRP1, DCT) 유전자들의 발현 수준의 상호 연관관계를 구명하기 위하여 수행되었다. 반정량 Real-time RT-PCR 분석을 통하여, 세 가지 유전자의 발현 수준을 MC1R 유전자형이 e/e인 한우의 황갈색 부위, $E^+/E^+$인 제주흑우의 야생형 흑색 부위, $E^D/E^D$인 Holstein의 우성 흑반과 백반부로 대표되는 4 종류의 피부 조직에서 분석하였다. TYR, TYRP1, DCT 유전자 모두 Holstein의 흑반 부위에서 제주흑우의 흑색 부위에 비해 각각 4.5 배, 2.3 배, 2.5 배 이상의 유전자 발현 수준을 나타내었다(p<0.001). 또한, 제주 흑우의 이들 3 가지 유전자들의 발현 수준은 한우에 비해 유의적으로 높은 수준을 나타내었다(p<0.001). 이러한 결과들은 한우와 제주흑우, Holstein의 흑색 부위의 모색 발현 양상들이 이들 3 가지 melanin 생합성 유전자들의 전사 수준과 직접적인 연관이 있는 것으로 사료되며, 이는 한우 e/e, 제주흑우 $E^+/E^+$ Holstein의 $E^D/E^D$ 등 서로 상이한 MC1R 유전자형의 관여가 반영된 결과로 추정되었다. 결론적으로 본 연구는 MC1R 단백질의 상태가 TYR과 일련의 melanin 합성 주관 유전자들의 전사활성을 유도할 뿐만 아니라 소의 피부에서 총 melanin 함량의 수준을 결정함을 제시하고 있다.

Keywords

References

  1. Chung, E. R., W. T. Kim, Y. S. Kim, and S. K. Han. 2000. Identification of Hanwoo meat using PCR-RFLP of MC1R gene associated with bovine coat color. Kor. J. Anim. Sci. Technol. 42, 379-390
  2. del Marmol, V. and F. Beermann. 1996. Tyrosinase and related proteins in mammalian pigmentation. FEBS Letters 381, 165-168 https://doi.org/10.1016/0014-5793(96)00109-3
  3. Du, J. A. J. Miller, H. R. Widlund, M. A. Horstmann, S. Ramaswamy, and D. E. Fisher. 2003. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am. J. Pathol. 163, 333-343 https://doi.org/10.1046/j.1523-1747.2003.12413.x
  4. Grosz, M. D. and M. D. MacNeil. 1999. The 'spotted' locus maps to bovine chromosome 6 in a Hereford-Cross population. J. Hered. 90, 233-236 https://doi.org/10.1093/jhered/90.1.233
  5. Guibert, S., M. Girardot, H. Leveziel, R. Julien, and A. Oulmouden. 2004. Pheomelanin coat colour dilution in french cattle breeds is not correlated with the TYR, TYRP1 and DCT Transcription levels. Pigment Cell Res. 17, 337-345 https://doi.org/10.1111/j.1600-0749.2004.00152.x
  6. Han, S. H., Y. H. Kim, I. C. Cho, B. G. Jang, M. S. Ko, H. Y. Jung, and S. S. Lee. 2008. Analysis of the genotype distribution in cattle breeds using a double mismatched primer set that discriminates the MC1R dominant black allele. Kor. J. Anim. Sci. Technol. 50, 633-640 https://doi.org/10.5187/JAST.2008.50.5.633
  7. Jackson, I. J. 1993. Colour-coded switches. Nature 362, 589-589 https://doi.org/10.1038/362589a0
  8. Jiao, Z., R. Mollaaghababa, W. J. Pavan, A. Antonellis, E. D. Green, and T. J. Hornyak. 2004. Direct interaction of Sox10 with the promoter of murine Dopachrome Tautomerase (Dct) and synergistic activation of Dct expression with Mitf. Pigment Cell Res. 17, 352-362 https://doi.org/10.1111/j.1600-0749.2004.00154.x
  9. Kim, T. H., D. H. Yoon, E. W. Park, H. Y. Lee, S. J. Oh, I. C. Cheong, T. Y. Thak, K. N. Kim, and J. Y. Han. 2000. A study on genotype frequencies of the bovine melanocortin receptor 1 (MC1R) in cattle breeds. Kor. J. Anim. Sci. Technol. 42, 735-744
  10. Klungland, H., D. I. Vage, L. Gomez-Raya, S. Adalsteinsson, and S. Lien. 1995. The role of melanocyte-stimulating hormone (MSH) receptor in bovine coat color determination. Mamm. Genome 6, 636-639 https://doi.org/10.1007/BF00352371
  11. Kurita, K., M. Nisnito, H. Shimogaki, K. Takada, H. Yamazaki, and T. Kunisada. 2005. Supression of progressive loss of coat color in Microphthalmia-vitiligo mutant mice. J. Invest. Dermatol. 125, 538-544 https://doi.org/10.1111/j.0022-202X.2005.23861.x
  12. Lee, S. S., S. R. Kang, S. H. Han, I. C. Cho, K. Y. Shin, Y. I. Cho, T. Y. Kang, M. S. Ko, and Y. H. Yang. 2007. Comaprative analysis of melanin contents in hairs among cattle breeds. Kor. J. Anim. Sci. Technol. 29, 147-154
  13. Lee, S. S., Y. H. Yang, S. Y. Kang, W. Y. Oh, B. S. Yang, S. B. Ko, S. J. Oh, and K. I. Kim. 2000. Comparison of the genotype and frequencies of MSH receptor (MC1R) gene in Korean cattle, Cheju native black cattle, Japanese black and Japanese brown cattle. Kor. J. Anim. Sci. Technol. 42, 253-260
  14. Robbins, L. S., J. H. Nadeau, K. R. Johnson, M. A. Kelly, L. Roselli-Rehfuss, E. Baack, K. G. Mountjoy, and R. D. Cone. 1993. Rigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function. Cell 72, 827-834 https://doi.org/10.1016/0092-8674(93)90572-8
  15. SAS. 1999. SAS/STAT software for PC. Release 8.01. SAS Institute Inc., Cary, NC, USA
  16. Sasazaki, S., M. Usui, H. Mannen, C. Hiura, and S. Tsuji. 2005. Allele frequencies of the extension locus encoding the melanocortin-1 receptor in Japanese and Korean cattle. Anim. Sci. J. 76, 129-132 https://doi.org/10.1111/j.1740-0929.2005.00247.x
  17. Slominski, A., D. J. Tobin, S. Shibahara, and J. Wortsman. 2004. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155-1228 https://doi.org/10.1152/physrev.00044.2003
  18. Sulaimon, S. S. and B. E. Kitchell. 2003. The biology of melanocytes. Vet. Dermatol. 14, 57-65 https://doi.org/10.1046/j.1365-3164.2003.00327.x
  19. Wakamatsu, K. and S. Ito. 2002. Advanced chemical methods in melanin determination. Pigment Cell Res. 15, 174-183 https://doi.org/10.1034/j.1600-0749.2002.02017.x
  20. Yasumoto, K., K. Yokoyama, K. Shibata, Y. Tomita, and S. Shibahara. 1994. Microphthalmia-associated transcription factor as a regulator for melanocyte specific transcription of the human tyrosinase gene. Mol. Cell Biol. 14, 8058-8070 https://doi.org/10.1128/MCB.14.12.8058

Cited by

  1. Comparison of Fatty Acid and Nutritional Composition of Korean Native Black Cattle and Hanwoo vol.30, pp.5, 2014, https://doi.org/10.9724/kfcs.2014.30.5.556
  2. PCR Technique for Determining Jeju Black Cattle, Hanwoo and Imported Beef vol.24, pp.8, 2014, https://doi.org/10.5352/JLS.2014.24.8.910
  3. Physicochemical Characteristics of Korean Black Cattle-Fed Mugwort vol.22, pp.5, 2012, https://doi.org/10.5352/JLS.2012.22.5.587
  4. Molecular Genetic Considerations of Jeju Black Cattle using Microsatellite Markers vol.49, pp.2, 2015, https://doi.org/10.14397/jals.2015.49.2.57