• Title/Summary/Keyword: TSUPREM-4

Search Result 24, Processing Time 0.018 seconds

Electrical Characteristics of 500V LIGBT for Intelligent Power ICs (인텔리전트 파워 IC용 500V급 LIGBT의 전기적 특성에 관한 연구)

  • Kang, Ey-Goo;Sul, Won-Ji;Seo, Hyun-Ju;Kim, Hyun-Mi;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.183-184
    • /
    • 2005
  • In this paper. a new small size Lateral Trench Electrode Power IGBT is proposed. The entire electrode of proposed LIGBT is placed in trench oxide. The forward blocking voltage of the proposed LIGBT is improved by 1.6 times with that of the conventional LIGBT. The forward blocking voltage of proposed LIGBT is 500V. At the same size. a increase of the forward blocking voltage of about 1.6 times relative to the conventional LIGBT is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide. the electric field in the device are crowded to trench oxide. We observed that the characteristics of i the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF

A Study on the Device Characteristics of NMOSFETs Having Elevated Source/drain Made by Selective Epitaxial Growth(SEG) of Silicon (실리콘 선택적 결정 성장 공정을 이용한 Elevated Source/drain물 갖는 NMOSFETs 소자의 특성 연구)

  • Kim, Yeong-Sin;Lee, Gi-Am;Park, Jeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.3
    • /
    • pp.134-140
    • /
    • 2002
  • Deep submicron NMOSFETs with elevated source/drain can be fabricated using self-aligned selective epitaxial growth(SEG) of silicon for enhanced device characteristics with shallow junction compared to conventional MOSFETs. Shallow junctions, especially with the heartily-doped S/D residing in the elevated layer, give hotter immunity to Yt roll off, drain-induced-barrier-lowering (DIBL), subthreshold swing (SS), punch-through, and hot carrier effects. In this paper, the characteristics of both deep submicron elevated source/drain NMOSFETs and conventional NMOSFETs were investigated by using TSUPREM-4 and MEDICI simulators, and then the results were compared. It was observed from the simulation results that deep submicron elevated S/D NMOSFETs having shallower junction depth resulted in reduced short channel effects, such as DIBL, SS, and hot carrier effects than conventional NMOSFETs. The saturation current, Idsat, of the elevated S/D NMOSFETs was higher than conventional NMOSFETs with identical device dimensions due to smaller sheet resistance in source/drain regions. However, the gate-to-drain capacitance increased in the elevated S/D MOSFETs compared with the conventional NMOSFETs because of increasing overlap area. Therefore, it is concluded that elevated S/D MOSFETs may result in better device characteristics including current drivability than conventional NMOSFETs, but there exists trade-off between device characteristics and fate-to-drain capacitance.

A Study on the Novel TIGBT with Trench Collector (트렌치 콜렉터를 가지는 새로운 TIGBT 에 관한 연구)

  • Lee, Jae-In;Yang, Sung-Min;Bae, Young-Seok;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.190-193
    • /
    • 2010
  • Various power semiconductor devices have been developed and evolved since 1950s. Among them, IGBT is the most developed power semiconductor device which has high breakdown voltage, high current conduction and suitable switching speed which perform trade-offs between each other. In other words, there are trade-offs between a breakdown voltage and on-state voltage drop, and between on-state voltage drop and turn-off time. In this paper, the new structure is proposed to improve a trade-off between a breakdown voltage and on-state voltage drop. The proposed structure has a trench collector and this trench collector induces an accumulation layer at the bottom of an n-drift region during off-state. And this accumulation layer prevents expansion of depletion layer so that trapezoidal electric field distribution is performed in the n-drift region. As a result of this, breakdown voltage is increased without increasing on-state voltage drop. The electrical characteristics of the proposed IGBT is analyzed and optimized by using representative device simulator, TSUPREM4 and MEDICI. After optimization, the electrical characteristics of the proposed IGBT is compared with NPT IGBT which have the same device thickness. As a result of this, it can be confirmed that the proposed structure increases the breakdown voltage of 800 V than that of the conventional NPT IGBT without increasing the on-state voltage drop.

The Improvement in the Forward Blocking Characteristics of Lateral Trench Electrode Power MOSFET by using Local Doping (로컬 도핑을 이용한 수평형 트렌치 전극 파워 MOSFET의 순방향 블로킹특성 개선)

  • Kim, Dae-Jong;Kim, Dae-Won;Sung, Man-Young;Rhie, Dong-Hee;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • In this paper, a new small size Lateral Trench Electrode Power MOSFET with local doping is proposed. This new structure is based on the conventional lateral power MOSFET. The entire electrodes of proposed device are placed in trench oxide. The forward blocking voltage of the proposed device is improved by 3.3 times with that of the conventional lateral power MOSFET. The forward blocking voltage of proposed device is about 500V. At the same size, a increase of the forward blocking voltage of about 3.3 times relative to the conventional lateral power MOSFET is observed by using TMA-MEDICI which is used for analyzing device characteristics. Because the electrodes of the proposed device are formed in trench oxide respectively, the electric field in the device are crowded to trench oxide. And because of the structure which has a narrow drain doping width, the punch through breakdown can be occurred in higher voltage than that of conventional lateral power MOSFET. We observed that the characteristics of the proposed device was improved by using TMA-MEDICI and that the fabrication of the proposed device is possible by using TMA-TSUPREM4.

  • PDF