• Title/Summary/Keyword: TSPLIB

Search Result 13, Processing Time 0.025 seconds

Perturbation Using Out-of-Kilter Arc of the Asymmetric Traveling Salesman Problem (비대칭 외판원문제에서 Out-of-Kilter호를 이용한 Perturbation)

  • Kwon Sang Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.30 no.2
    • /
    • pp.157-167
    • /
    • 2005
  • This paper presents a new perturbation technique for developing efficient iterated local search procedures for the asymmetric traveling salesman problem(ATSP). This perturbation technique uses global information on ATSP instances to speed-up computation and to improve the quality of the tours found by heuristic method. The main idea is to escape from a local optima by introducing perturbations on the out-of-kilter arcs in the problem instance. For a local search heuristic, we use the Kwon which finds optimum or near-optimum solutions by applying the out-of-kilter algorithm to the ATSP. The performance of our algorithm has been tested and compared with known method perturbing on randomly chosen arcs. A number of experiments has been executed both on the well-known TSPLIB instances for which the optimal tour length is known, and on randomly generated Instances. for 27 TSPLIB instances, the presented algorithm has found optimal tours on all instances. And it has effectively found tours near AP lower bound on randomly generated instances.

A Clustering Algorithm Using the Ordered Weight of Self-Organizing Feature Maps (자기조직화 신경망의 정렬된 연결강도를 이용한 클러스터링 알고리즘)

  • Lee Jong-Sup;Kang Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.31 no.3
    • /
    • pp.41-51
    • /
    • 2006
  • Clustering is to group similar objects into clusters. Until now there are a lot of approaches using Self-Organizing feature Maps (SOFMS) But they have problems with a small output-layer nodes and initial weight. For example, one of them is a one-dimension map of c output-layer nodes, if they want to make c clusters. This approach has problems to classify elaboratively. This Paper suggests one-dimensional output-layer nodes in SOFMs. The number of output-layer nodes is more than those of clusters intended to find and the order of output-layer nodes is ascending in the sum of the output-layer node's weight. We un find input data in SOFMs output node and classify input data in output nodes using Euclidean distance. The proposed algorithm was tested on well-known IRIS data and TSPLIB. The results of this computational study demonstrate the superiority of the proposed algorithm.

Differential Evolution Algorithm based on Random Key Representation for Traveling Salesman Problems (외판원 문제를 위한 난수 키 표현법 기반 차분 진화 알고리즘)

  • Lee, Sangwook
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.636-643
    • /
    • 2020
  • The differential evolution algorithm is one of the meta-heuristic techniques developed to solve the real optimization problem, which is a continuous problem space. In this study, in order to use the differential evolution algorithm to solve the traveling salesman problem, which is a discontinuous problem space, a random key representation method is applied to the differential evolution algorithm. The differential evolution algorithm searches for a real space and uses the order of the indexes of the solutions sorted in ascending order as the order of city visits to find the fitness. As a result of experimentation by applying it to the benchmark traveling salesman problems which are provided in TSPLIB, it was confirmed that the proposed differential evolution algorithm based on the random key representation method has the potential to solve the traveling salesman problems.

The Maximum Scatter Travelling Salesman Problem: A Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Asaad Shakir Hameed;Modhi Lafta Mutar;Mohammed F. Alrifaie;Mundher Mohammed Taresh
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.193-201
    • /
    • 2023
  • In this paper, we consider the maximum scatter traveling salesman problem (MSTSP), a travelling salesman problem (TSP) variant. The problem aims to maximize the minimum length edge in a salesman's tour that travels each city only once in a network. It is a very complicated NP-hard problem, and hence, exact solutions can be found for small sized problems only. For large-sized problems, heuristic algorithms must be applied, and genetic algorithms (GAs) are found to be very successfully to deal with such problems. So, this paper develops a hybrid GA (HGA) for solving the problem. Our proposed HGA uses sequential sampling algorithm along with 2-opt search for initial population generation, sequential constructive crossover, adaptive mutation, randomly selected one of three local search approaches, and the partially mapped crossover along with swap mutation for perturbation procedure to find better quality solution to the MSTSP. Finally, the suggested HGA is compared with a state-of-art algorithm by solving some TSPLIB symmetric instances of many sizes. Our computational experience reveals that the suggested HGA is better. Further, we provide solutions to some asymmetric TSPLIB instances of many sizes.

A New Approach to Solve the TSP using an Improved Genetic Algorithm

  • Gao, Qian;Cho, Young-Im;Xi, Su Mei
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.217-222
    • /
    • 2011
  • Genetic algorithms are one of the most important methods used to solve the Traveling Salesman Problem. Therefore, many researchers have tried to improve the Genetic Algorithm by using different methods and operations in order to find the optimal solution within reasonable time. This paper intends to find a new approach that adopts an improved genetic algorithm to solve the Traveling Salesman Problem, and compare with the well known heuristic method, namely, Kohonen Self-Organizing Map by using different data sets of symmetric TSP from TSPLIB. In order to improve the search process for the optimal solution, the proposed approach consists of three strategies: two separate tour segments sets, the improved crossover operator, and the improved mutation operator. The two separate tour segments sets are construction heuristic which produces tour of the first generation with low cost. The improved crossover operator finds the candidate fine tour segments in parents and preserves them for descendants. The mutation operator is an operator which can optimize a chromosome with mutation successfully by altering the mutation probability dynamically. The two improved operators can be used to avoid the premature convergence. Simulation experiments are executed to investigate the quality of the solution and convergence speed by using a representative set of test problems taken from TSPLIB. The results of a comparison between the new approach using the improved genetic algorithm and the Kohonen Self-Organizing Map show that the new approach yields better results for problems up to 200 cities.

A Hybrid Genetic Algorithm Using Epistasis Information for Sequential Ordering Problems (서열순서화문제를 위한 상위정보를 이용하는 혼합형 유전 알고리즘)

  • Seo Dong-Il;Moon Byung-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.6
    • /
    • pp.661-667
    • /
    • 2005
  • In this paper, we propose a new hybrid genetic algorithm for sequential ordering problem (SOP). In the proposed genetic algorithm, the Voronoi quantized crossover (VQX) is used as a crossover operator and the path-preserving 3-Opt is used as a local search heuristic. VQX is a crossotver operator that uses the epistasis information of given problem instance. Since it is a crossover proposed originally for the traveling salesman problem (TSP), its application to SOP requires considerable modification. In this study, we appropriately modify VQX for SOP, and develop three algorithms, required in the modified VQX, named Feasible solution Generation Algorithm, Precedence Cycle Decomposition Algorithm, and Genic Distance Assignment Method. The results of the tests on SOP instances obtained from TSPLIB and ZIB-MP-Testdata show that the proposed genetic algorithm outperforms other genetic algorithms in stability and solution quality.

GPU-based Parallel Ant Colony System for Traveling Salesman Problem

  • Rhee, Yunseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we design and implement a GPU-based parallel algorithm to effectively solve the traveling salesman problem through an ant color system. The repetition process of generating hundreds or thousands of tours simultaneously in TSP utilizes GPU's task-level parallelism, and the update process of pheromone trails data actively exploits data parallelism by 32x32 thread blocks. In particular, through simultaneous memory access of multiple threads, the coalesced accesses on continuous memory addresses and concurrent accesses on shared memory are supported. This experiment used 127 to 1002 city data provided by TSPLIB, and compared the performance of sequential and parallel algorithms by using Intel Core i9-9900K CPU and Nvidia Titan RTX system. Performance improvement by GPU parallelization shows speedup of about 10.13 to 11.37 times.

Cost Relaxation Using an Arc Set Likely to Construct an Optimal Solution for the Asymmetric Traveling Salesman Problem (비대칭 외판원문제에서 최적해에 포함될 가능성이 높은 호들을 이용한 비용완화법)

  • Kwon, Sang-Ho;SaGong, Seon-Hwa;Kang, Maing-Kyu
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.17-26
    • /
    • 2008
  • The traveling salesman problem is to find tours through all cities at minimum cost ; simply visiting the cities only once that a salesman wants to visit. As such, the traveling salesman problem is a NP-complete problem ; an heuristic algorithm is preferred to an exact algorithm. In this paper, we suggest an effective cost relaxation using a candidate arc set which is obtained from a regression function for the traveling salesman problem. The proposed method sufficiently consider the characteristics of cost of arcs compared to existing methods that randomly choose the arcs for relaxation. For test beds, we used 31 instances over 100 cities existing from TSPLIB and randomly generated 100 instances from well-known instance generators. For almost every instances, the proposed method has found efficiently better solutions than the existing method.

Elimination of Subtours Obtained by the Out-of-Kilter Algorithm for the Sequential Ordering Problem (선행순서결정문제를 위한 Out-of-Kilter 해법의 적용과 부분순환로의 제거)

  • Kwon, Sang-Ho
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.3
    • /
    • pp.47-61
    • /
    • 2007
  • This paper presents two elimination methods of subtours, which is obtained by applying the Out-of-Kilter algorithm to the sequential ordering problem (SOP) to produce a feasible solution for the SOP. Since the SOP is a kind of asymmetric traveling salesman problem (ATSP) with precedence constraints, we can apply the Out-of-Kilter algorithm to the SOP by relaxing the precedence constraints. Instead of patching subtours, both of two elimination methods construct a feasible solution of the SOP by using arcs constructing the subtours, and they improve solution by running 3-opt and 4-opt at each iteration. We also use a perturbation method. cost relaxation to explore a global solution. Six cases from two elimination methods are presented and their experimental results are compared to each other. The proposed algorithm found 32 best known solutions out of the 34 instances from the TSPLIB in a reasonable time.

Hybrid Parallel Genetic Algorithm for Traveling Salesman Problem (순회 판매원 문제를 위한 하이브리드 병렬 유전자 알고리즘)

  • Kim, Ki-Tae;Jeo, Geon-Wook
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.107-114
    • /
    • 2011
  • Traveling salesman problem is to minimize the total cost for a traveling salesman who wants to make a tour given finite number of cities along with the cost of travel between each pair them, visiting each cities exactly once before returning home. Traveling salesman problem is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study suggests a hybrid parallel genetic algorithm(HPGA) for traveling salesman problem The suggested algorithm combines parallel genetic algorithm, nearest neighbor search, and 2-opt. The suggested algorithm has been tested on 7 problems in TSPLIB and compared the results of existing methods(heuristics, meta-heuristics, hybrid, and parallel). Experimental results shows that HPGA could obtain good solution in total travel distance minimization.