• Title/Summary/Keyword: TPM (Trusted Platform Module)

Search Result 22, Processing Time 0.024 seconds

A Property-Based Data Sealing using the Weakest Precondition Concept (최소 전제조건 개념을 이용한 성질 기반 데이터 실링)

  • Park, Tae-Jin;Park, Jun-Cheol
    • Journal of Internet Computing and Services
    • /
    • v.9 no.6
    • /
    • pp.1-13
    • /
    • 2008
  • Trusted Computing is a hardware-based technology that aims to guarantee security for machines beyond their users' control by providing security on computing hardware and software. TPM(Trusted Platform Module), the trusted platform specified by the Trusted Computing Group, acts as the roots for the trusted data storage and the trusted reporting of platform configuration. Data sealing encrypts secret data with a key and the platform's configuration at the time of encryption. In contrast to the traditional data sealing based on binary hash values of the platform configuration, a new approach called property-based data sealing was recently suggested. In this paper, we propose and analyze a new property-based data sealing protocol using the weakest precondition concept by Dijkstra. The proposed protocol resolves the problem of system updates by allowing sealed data to be unsealed at any configuration providing the required property. It assumes practically implementable trusted third parties only and protects platform's privacy when communicating. We demonstrate the proposed protocol's operability with any TPM chip by implementing and running the protocol on a software TPM emulator by Strasser. The proposed scheme can be deployed in PDAs and smart phones over wireless mobile networks as well as desktop PCs.

  • PDF

Design and Implementation of an Automated Privacy Protection System over TPM and File Virtualization (TPS: TPM 및 파일 가상화를 통한 개인정보보호 자동화 시스템 디자인 및 구현)

  • Jeong, Hye-Lim;Ahn, Sung-Kyu;Kim, Mun Sung;Park, Ki-Woong
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.7-17
    • /
    • 2017
  • In this paper, we propose the TPS (TPM-enhanced Privacy Protection System) which is an automated privacy protection system enhanced with a TPM (Trusted Platform Module). The TPS detects documents including personal information by periodic scanning the disk of clients at regular intervals and encrypts them. Hence, system manages the encrypted documents in the server. In particular, the security of TPS was greatly enhanced by limiting the access of documents including the personal information with regard to the client in an abnormal state through the TPM-based platform verification mechanism of the client system. In addition, we proposed and implemented a VTF (Virtual Trusted File) interface to provide users with the almost identical user interface as general document access even though documents containing personal information are encrypted and stored on the remote server. Consequently, the TPS automates the compliance of the personal information protection acts without additional users' interventions.

Design of a Mobile DAA Model through Java Test Module for the DAA Protocol (DAA 자바 실험모듈 구현을 통한 모바일 DAA 모델 설계)

  • Yang, Seok-Hwan;Lee, Ki-Yeal;Chung, Mok-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.773-777
    • /
    • 2008
  • Today's mobile devices have characteristic of random mobility in the heterogeneous networks. Thus they should have various kinds of security requirements. To satisfy these requirements, there are many researches on security and authentication for mobile devices. TCG(Trusted Computing Group) designed TPM(Trusted Platform Module) for providing privacy and authentication to users. Also TCG suggest a protocol, called DAA(Direct Anonymous Attestation) which uses zero knowledge proof theory. In this paper, we will implement DAA protocol using Java and show the efficiency and the problems in the DAA protocol. Finally, we will suggest an efficient mobile DAA model through Java test module for the DAA protocol.

Security and Privacy Mechanism using TCG/TPM to various WSN (다양한 무선네트워크 하에서 TCG/TPM을 이용한 정보보호 및 프라이버시 매커니즘)

  • Lee, Ki-Man;Cho, Nae-Hyun;Kwon, Hwan-Woo;Seo, Chang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.195-202
    • /
    • 2008
  • In this paper, To improve the effectiveness of security enforcement, the first contribution in this work is that we present a clustered heterogeneous WSN(Wareless Sensor Network) architecture, composed of not only resource constrained sensor nodes, but also a number of more powerful high-end devices acting as cluster heads. Compared to sensor nodes, a high-end cluster head has higher computation capability, larger storage, longer power supply, and longer radio transmission range, and it thus does not suffer from the resource scarceness problem as much as a sensor node does. A distinct feature of our heterogeneous architecture is that cluster heads are equipped with TC(trusted computing) technology, and in particular a TCG(Trusted Computing Group) compliant TPM (Trusted Platform Module) is embedded into each cluster head. According the TCG specifications, TPM is a tamper-resistant, self-contained secure coprocessor, capable of performing cryptographic functions. A TPM attached to a host establishes a trusted computing platform that provides sealed storage, and measures and reports the integrity state of the platform.

  • PDF

Secure and Resilient Framework for Internet of Medical Things (IoMT) with an Effective Cybersecurity Risk Management

  • Latifah Khalid Alabdulwahhab;Shaik Shakeel Ahamad
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.73-78
    • /
    • 2024
  • COVID-19 pandemic outbreak increased the use of Internet of Medical Things (IoMT), but the existing IoMT solutions are not free from attacks. This paper proposes a secure and resilient framework for IoMT, it computes the risk using Risk Impact Parameters (RIP) and Risk is also calculated based upon the Threat Events in the Internet of Medical Things (IoMT). UICC (Universal Integrated Circuit Card) and TPM (Trusted Platform Module) are used to ensure security in IoMT. PILAR Risk Management Tool is used to perform qualitative and quantitative risk analysis. It is designed to support the risk management process along long periods, providing incremental analysis as the safeguards improve.

Trustworthy Mutual Attestation Protocol for Local True Single Sign-On System: Proof of Concept and Performance Evaluation

  • Khattak, Zubair Ahmad;Manan, Jamalul-Lail Ab;Sulaiman, Suziah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2405-2423
    • /
    • 2012
  • In a traditional Single Sign-On (SSO) scheme, the user and the Service Providers (SPs) have given their trust to the Identity Provider (IdP) or Authentication Service Provider (ASP) for the authentication and correct assertion. However, we still need a better solution for the local/native true SSO to gain user confidence, whereby the trusted entity must play the role of the ASP between distinct SPs. This technical gap has been filled by Trusted Computing (TC), where the remote attestation approach introduced by the Trusted Computing Group (TCG) is to attest whether the remote platform integrity is indeed trusted or not. In this paper, we demonstrate a Trustworthy Mutual Attestation (TMutualA) protocol as a proof of concept implementation for a local true SSO using the Integrity Measurement Architecture (IMA) with the Trusted Platform Module (TPM). In our proposed protocol, firstly, the user and SP platform integrity are checked (i.e., hardware and software integrity state verification) before allowing access to a protected resource sited at the SP and releasing a user authentication token to the SP. We evaluated the performance of the proposed TMutualA protocol, in particular, the client and server attestation time and the round trip of the mutual attestation time.

모바일 플랫폼용 공통보안핵심 모듈 기술

  • Kim Moo-Seop;Shin Jin-A;Park Young-Soo;Jun Sung-Ik
    • Review of KIISC
    • /
    • v.16 no.3
    • /
    • pp.7-17
    • /
    • 2006
  • TCG(Trusted Computing Group)는 더욱 안전한 컴퓨팅 환경의 구현을 목적으로 설립된 업계 컨소시엄으로, 데이터의 신뢰성을 제공하기 위하여 TPM(Trusted Platform Module)으로 불리는 신뢰의 기본을 제공하는 핵심 하드웨어의 사용을 제안하고 있다. 최근 모바일 디바이스의 성능 향상에 따라 다양한 응용들의 지원이 가능해지고, 네트워크를 통한 소프트웨어의 업데이트 및 응용프로그램의 다운로드 등이 가능한 개방형 플랫폼으로의 변화에 따른 디지털 컨버젼스는 TMP(Trusted Mobile Platform)라는 새로운 모바일 플랫폼용 규격의 사용을 필요로 하고 있다. 본 고에서는 기존 컴퓨팅 환경과 모바일 플랫폼에 핵심 보안 모듈인 TPM 기술의 국내 외 기술의 동향과 핵심 요소들에 대한 기술적 개념들을 살펴본다.

Hardware Crypto-Core Based Authentication System (하드웨어 암호코어 기반 인증 시스템)

  • Yoo, Sang-Guun;Park, Keun-Young;Kim, Tae-Jun;Kim, Ju-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.121-132
    • /
    • 2009
  • Default password protection used in operating systems have had many advances, but when the attacker has physical access to the server or gets root(administrator) privileges, the attacker can steal the password information(e.g. shadow file in Unix-like systems or SAM file in Windows), and using brute force and dictionary attacks can manage to obtain users' passwords. It is really difficult to obligate users to use complex passwords, so it is really common to find weak accounts to exploit. In this paper, we present a secure authentication scheme based on digital signatures and secure key storage that solves this problem, and explain the possible implementations using Trusted Platform Module(TPM). We also make a performance analysis of hardware and software TPMs inside implementations.

Improving Hadoop security using TPM (TPM을 이용한 하둡 보안의 강화)

  • Park, Seung-Je;Kim, Hee-Youl
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06c
    • /
    • pp.233-235
    • /
    • 2012
  • 하둡 프레임워크는 현재 오픈소스 기반의 클라우드 인프라의 사실상 표준이다. 최초 하둡은 보안요소를 고려하지 않고 설계 되었지만 현재는 강력한 인증프로토콜인 커버로스를 사용하는 등의 보안 기능이 추가되었다. 하둡 보안은 꽤 안전해 보이지만, 클라우드 컴퓨팅의 범용적인 사용의 가장 중요한 요소는 보안인 것을 감안해보면 클라우드 제공자는 기존보다 더욱 강력한 보안 레벨을 고객에게 보장하여야 한다. 본 논문에서는 하둡 보안의 한계점을 제시하고 하드웨어 보안칩 TPM(Trusted Platform Module)을 이용한 해결방안을 제시한다.

Vulnerability Analysis of Insider Attack on TPM Command Authorization Protocol and Its Countermeasure (TPM 명령어 인가 프로토콜에 대한 내부자 공격 취약점 분석 및 대응책)

  • Oh, Doo-Hwan;Choi, Doo-Sik;Kim, Ki-Hyun;Oh, Soo-Hyun;Ha, Jae-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1356-1366
    • /
    • 2011
  • The TPM(Trusted Platform Module) is a hardware chip to support a trusted computing environment. A rightful user needs a command authorization process in order to use principal TPM commands. To get command authorization from TPM chip, the user should perform the OIAP(Object-Independent Authorization Protocol) or OSAP(Object-Specific Authorization Protocol). Recently, Chen and Ryan alerted the vulnerability of insider attack on TPM command authorization protocol in multi-user environment and presented a countermeasure protocol SKAP(Session Key Authorization Protocol). In this paper, we simulated the possibility of insider attack on OSAP authorization protocol in real PC environment adopted a TPM chip. Furthermore, we proposed a novel countermeasure to defeat this insider attack and improve SKAP's disadvantages such as change of command suructures and need of symmetric key encryption algorithm. Our proposed protocol can prevent from insider attack by modifying of only OSAP command structure and adding of RSA encryption on user and decryption on TPM.