• Title/Summary/Keyword: TNF-β

Search Result 425, Processing Time 0.025 seconds

Anti-allergic Effect of Graviola Leaf Extract in Human Mast Cells (인간 비만세포에서 그라비올라 잎 추출물의 항알러지 효과)

  • Kim, Dae-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1764-1772
    • /
    • 2020
  • This study is aimed at determining whether graviola (Annona muricata) beneficially influences immunoglobulin (Ig) E-mediated allergic reactions in human mast cells (LUVA cells). To examine the anti-allergic effect of graviola leaf extract (GLE), we treated antigen/IgE sensitized mast cells with extracts of various concentrations. In this study, the results of the in vitro model of IgE-mediated mast cell degranulation showed that GLE significantly inhibited the release of histamine, β-hexosaminidase, TNF-α, IL-4 and IL-6 in LUVA cells. Pretreatment with GLE suppressed the phosphorylation of antigen-induced Lyn and Syk, thus suppressing the downstream MAPKs pathways. The above results indicate GLE could suppress mast cell activation and allergic responses. Accordingly, it can be supported that GLE has the potential to be used as functional cosmetic material.

Anti-inflammatory Effect of Broccoli Leaf Hexane Fraction in LPS-stimulated RAW264.7 Cells

  • Kim, Mee-Kyung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.175-181
    • /
    • 2022
  • In this study, we tested the anti-inflammatory effects of broccoli leaf hexane fraction to confirm the applicability as a functional material in food and cosmetics. This sample was extracted using 70% ethanol from Broccoli leaf and then fractionated with hexane. The production of pro-inflammatory cytokines (TNF-α, IL-4, IL-6, IL-1β), protein expression of iNOS and COX-2, phosphorylation of MAPKs (ERK, JNK, p38) and NF-κB with broccoli leaf hexane fraction were assayed on LPS-stimulated RAW264.7 cells. The broccoli leaf hexane fraction inhibited the secretion of pro-inflammatory cytokines and protein expression of iNOS and COX-2. Also, the broccoli leaf hexane fraction reduced the phosphorylation of MAPKs and NF-κB. Therefore, it is considered that th broccoli leaf hexane fraction has the potential to be used as a natural anti-inflammatory material in food and cosmetics. In the future, it is considered necessary to study the anti-inflammatory mechanism and identification of major bioactive substances.

Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice

  • Ranaweera, Sachithra S.;Dissanayake, Chanuri Y.;Natraj, Premkumar;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • v.21 no.6
    • /
    • pp.91.1-91.15
    • /
    • 2020
  • Background: Sulforaphane (SFN) is an isothiocyanate compound present in cruciferous vegetables. Although the anti-inflammatory effects of SFN have been reported, the precise mechanism related to the inflammatory genes is poorly understood. Objectives: This study examined the relationship between the anti-inflammatory effects of SFN and the differential gene expression pattern in SFN treated ob/ob mice. Methods: Nitric oxide (NO) level was measured using a Griess assay. The inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels were analyzed by Western blot analysis. Pro-inflammatory cytokines (tumor necrosis factor [TNF]-α, interleukin [IL]-1β, and IL-6) were measured by enzyme-linked immunosorbent assay (ELISA). RNA sequencing analysis was performed to evaluate the differential gene expression in the liver of ob/ob mice. Results: The SFN treatment significantly attenuated the iNOS and COX-2 expression levels and inhibited NO, TNF-α, IL-1β, and IL-6 production in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. RNA sequencing analysis showed that the expression levels of 28 genes related to inflammation were up-regulated (> 2-fold), and six genes were down-regulated (< 0.6-fold) in the control ob/ob mice compared to normal mice. In contrast, the gene expression levels were restored to the normal level by SFN. The protein-protein interaction (PPI) network showed that chemokine ligand (Cxcl14, Ccl1, Ccl3, Ccl4, Ccl17) and chemokine receptor (Ccr3, Cxcr1, Ccr10) were located in close proximity and formed a "functional cluster" in the middle of the network. Conclusions: The overall results suggest that SFN has a potent anti-inflammatory effect by normalizing the expression levels of the genes related to inflammation that were perturbed in ob/ob mice.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

Research of the Anti-inflammatory Effects of Hwadokdan on Raw 264.7 Cells (Raw 264.7 세포에서 화독단(化毒丹)의 항염증 효능에 대한 연구)

  • Shin, Ki Seok;Hwangbo, Min;Jee, Seon Young
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.35 no.3
    • /
    • pp.36-47
    • /
    • 2022
  • Objectives : The purpose of this study was to evaluate the anti-Inflammatory effect of Hwadokdan(HDD) extracted with water. Methods : We pretreated LPS-activated Raw 264.7 cell with HDD and anti-inflammatory effect of HDD is investigated by measuring NO production, relative iNOS, and TNF-α, IL-6, IL-1β, PGE2 productions level, p-IκBα, IκBα, NFκB. Results : HDD reduced NO production and iNOS protein, TNF-α, IL-6 level at concentration of 100㎍/㎖ and 300㎍/㎖ in LPS-activated Raw 264.7 cell significantly. There wasn't a significant cytotoxicity in MTT assay. And HDD reduced IL-1β level at concentration of 300㎍/㎖ in LPS-activated Raw 264.7 cell significantly. HDD reduced p-IκBα and NFκB protein level at concentration of 300㎍/㎖ in LPS-activated Raw 264.7 cell significantly. And HDD enhanced IκBα protein level at concentration of 100㎍/㎖ and 300㎍/㎖ in LPS-activated Raw 264.7 cell significantly. Conclusions : These suggests that HDD can be used as a therapeutic drug for various inflammatory diseases.

Improvement Effect of Soyeom Pharmacopuncture on Gout via NLRP3 Inflammasome Regulation

  • Sung Wook Kim;Jun Ho Lee;Hyeonjin Kim;Seong Hoon Lee;Dajeong Jeong;Hyuk Soon Kim;Cheol-Jung Lee;Dae Yong Kim;Tae Han Yook;Gabsik Yang
    • Journal of Pharmacopuncture
    • /
    • v.25 no.4
    • /
    • pp.396-403
    • /
    • 2022
  • Objectives: Gout is an inflammatory arthritis of the joints and soft tissues occurring due to deposition of monosodium urate (MSU) crystals, which are caused by persistent hyperuricemia. Soyeom pharmacopuncture is one treatment method that has been traditionally used for pain management in Oriental medicine. However, studies on its effect in reducing gout pain have been insufficient. Therefore, we selected Soyeom pharmacopuncture among natural products used in Korea as the new target of our study. Methods: The effects of Soyeom pharmacopuncture were examined in mouse models of acute gout induced by injection of MSU crystals into footpads. IL-1β, IL-6, and TNF-α production were examined by immunoblotting and enzyme-linked immunosorbent assay as hallmarks of NLRP3 inflammasome and cytokine activation. Results: Soyeom pharmacopuncture reduced foot edema in gout-induced mice, as well as IL-1β, nitrite, IL-6, and TNF-α production. Moreover, Soyeom pharmacopuncture also reduced MSU-induced gout inflammatory gene expressions, specifically those in the NF-kB pathway. Conclusion: Pharmacopuncture may serve as a new solution for other inflammatory diseases as well. Through active follow-up studies, we could thoroughly understand the clinical value of Soyeom pharmacopuncture.

Paeonol accelerates skin wound healing by regulating macrophage polarization and inflammation in diabetic rats

  • Zuyang Zhang;Tianhua Chen;Wei Liu;Jiepeng Xiong;Liangdong Jiang;Mingjiang Liu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.5
    • /
    • pp.437-448
    • /
    • 2023
  • Diabetic ulcer is usually seen in people with uncontrolled blood sugar. Reportedly, many factors such as impaired glucose metabolism, and macrovascular and microvascular diseases caused angiogenesis disorders and delayed the healing of diabetic ulcers, thus affecting the body's metabolism, nutrition, and immune function. This study aimed to explore the effect of paeonol on skin wound healing in diabetic rats and the related mechanism. A rat model of diabetic ulcer was established. High glucose-treated mouse skin fibroblasts were co-cultured with M1 or M2-polarized macrophages treated with or without paeonol. H&E and Masson staining were used to reveal inflammatory cell infiltration and collagen deposition, respectively. Immunohistochemistry visualized the expression of Ki67, CD31, and vascular endothelial growth factor (VEGF). Western blot was used to detect interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, IL-10, CD31, VEGFA, and collagen I/III. The expression of iNOS and arginase 1 was revealed by immunofluorescence staining. Paeonol treatment augmented collagen deposition and the expression of Ki67, CD31, VEGF, and macrophage M2 polarization markers (IL-4 and IL-10) and reduced wound area, inflammatory cell infiltration, and macrophage M1 polarization markers (IL-1β and TNF-α) in the ulcerated area. In vitro, paeonol treatment promoted M2-polarization and repressed M1-polarization in macrophages, thereby improving the repair of cell damage induced by high glucose. Paeonol accelerates the healing of diabetic ulcers by promoting M2 macrophage polarization and inhibiting M1 macrophage polarization.

Immune-enhancing effect of hydrolyzed and fermented Platycodon grandiflorum extract in cyclophosphamide-induced immunosuppressed BALB/c mice

  • Hyun Sook Lee;So Mi Kim;Jae In Jung;Jihoon Lim;Moonjea Woo;Eun Ji Kim
    • Nutrition Research and Practice
    • /
    • v.17 no.2
    • /
    • pp.206-217
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: The immunomodulatory effect of Platycodon grandiflorum (PG) has been reported, but studies on its mechanism are still lacking. This study was undertaken to confirm whether the hydrolyzed and fermented PG extract (HFPGE) obtained by adding hydrolysis and fermentation to the extraction process has an immune-enhancing effect in the in vivo system. MATERIALS/METHODS: Five-week-old BALB/c mice were divided into 4 groups: normal control group (NOR), control group (CON), 150 mg/kg body weight (BW)/day HFPGE-treated group (T150), and 300 mg/kg BW/day HFPGE-treated group (T300). The mice were administered HFPGE for 4 weeks and intraperitoneally injected with cyclophosphamide (CPA, 80 mg/kg BW/day) on day 6, 7, and 8, respectively, to induce immunosuppression. The levels of immunoglobulins (Igs) and cytokines were measured in the serum. In splenocytes, proliferation and cytokine levels were measured. RESULTS: Serum IgA, IgG, and IgM levels were observed to decrease after CPA treatment, which was recovered by HFPGE administration. The levels of serum interleukin (IL)-12, tumor necrosis factor (TNF)-α, IL-8, and transforming growth factor (TGF)-β were also decreased after exposure to CPA but increased after HFPGE administration. Decreased splenocyte proliferation was seen in CPA-treated mice, but was observed to increase in the T150 and T300 groups as compared to the NOR group. Compared to the CON group, splenocyte proliferation stimulated with concanavalin A (ConA) or lipopolysaccharide (LPS) in the HFPGE-treated groups was significantly increased. The cytokines secreted by ConA-stimulated splenocytes (IL-2, IL-12, interferon-γ, TNF-α) were increased in the T150 and T300 groups, and cytokines secreted by LPS-stimulated splenocytes (IL-4, IL-8, TGF-β) were also increased by HFPGE administration. CONCLUSION: These results suggest that HFPGE stimulates the immunity in immunosuppressed conditions, thereby enhancing the immune response. Therefore, it is expected that HFPGE has the potential to be used as functional food and medicine for immune recovery in various immunocompromised situations.

Comparison of cytokine genes related with immune responses in canine macrophages using different culture models after infection with Brucella canis

  • Park, Woo Bin;Kim, Suji;Shim, Soojin;Yoo, Han Sang
    • Journal of Preventive Veterinary Medicine
    • /
    • v.43 no.4
    • /
    • pp.214-220
    • /
    • 2019
  • Although canine brucellosis has been known to be an important re-emerging zoonosis, the pathophysiological mechanisms of Brucella canis infection remains clues to be solved. Different culture models, single and co-culture models, were constructed with canine epithelial cells, D17 and macrophage, DH82 to investigate the induction of immune responses in in vivo B. canis infection. Expression of genes related with induction of immune responses, Th1, Th2 and Th17, was compared in the two different models after the bacterial infection. In this study, expression of cytokine genes, IL-1β, IL-5, IL-6, IL-10, IL-23, and TNF-α was quantified in the DH82 at different time points using RT-qPCR in the two different culture systems after the infection. Cytokine genes related with Th1, IL-1β and TNF-α and Th17, IL-6 and IL-23 were expressed with time-dependent manners in the both systems (p<0.05). However, increase of Th2-related cytokine genes expression was not detectable in the both systems by comparison with control. The expression of Th1 and Th17 related cytokine genes was earlier in single cell culture than those in co-culture model (p<0.05). In general, amounts of the expressed genes were shown higher in single cell model than those in co-culture models. This study indicate that Th1 and Th17-associated immune responses are central to B. canis infection in dogs. In addition, it suggests a specific role of epithelial cells in the B. canis infection in vivo, which should resolved in the further study.

Lactic Acid Bacteria Isolated from Human Breast Milk Improve Colitis Induced by 2,4,6-Trinitrobenzene Sulfonic Acid by Inhibiting NF-κB Signaling in Mice

  • Kyung-Joo Kim;Suhyun Kyung;Hui Jin;Minju Im;Jae-won Kim;Hyun Su Kim;Se-Eun Jang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1057-1065
    • /
    • 2023
  • Inflammatory bowel disease (IBD), a chronic inflammatory disease, results from dysregulation of the immune responses. Some lactic acid bacteria (LAB), including Lactobacillus, alleviate IBD through immunomodulation. In this study, the anti-colitis effect of LAB isolated from human breast milk was investigated in a mouse model induced acute colitis with 2,4,6-trinitrobenzene sulfonic acid (TNBS). TNBS remarkably increased weight loss, colon shortening, and colonic mucosal proliferation, as well as the expression levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α) and interleukin (IL)-1β. Oral administration of LAB isolated from human breast milk resulted in a reduction in TNBS-induced colon shortening, as well as induced cyclooxygenase (COX)-2, nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-κB). In addition, LAB suppressed inflammatory cytokines such as TNF-α, IL-6, and IL-1β, and thus showed an effect of suppressing the level of inflammation induced by TNBS. Furthermore, LAB alleviated gut microbiota dysbiosis, and inhibited intestinal permeability by increasing the expression of intestinal tight junction protein including ZO-1. Collectively, these results suggest that LAB isolated from human breast milk can be used as a functional food for colitis treatment by regulating NF-κB signaling, gut microbiota and increasing expression of intestinal tight junction protein.