Acknowledgement
This study was supported by the program of supporting Promising Small and Medium Industry (Grant No: C0518751) funded by the Korea Small and Medium Business Administration in 2017. The study was also supported by the 2019 scientific promotion program funded by Jeju National University.
References
- Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, et al. Inflammation, immunity, and hypertension. Hypertension. 2011;57(2):132-140. https://doi.org/10.1161/hypertensionaha.110.163576
- Shapiro H, Lutaty A, Ariel A. Macrophages, meta-inflammation, and immuno-metabolism. Sci World J. 2011;11:2509-2529. https://doi.org/10.1100/2011/397971
- Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors. J Leukoc Biol. 2010;88(5):877-884. https://doi.org/10.1189/jlb.0310153
- Li Q, Verma IM. NF-κB regulation in the immune system. Nat Rev Immunol. 2002;2(10):725-734. https://doi.org/10.1038/nri910
- Ye J, McGuinness OP. Inflammation during obesity is not all bad: evidence from animal and human studies. Am J Physiol Endocrinol Metab. 2013;304(5):E466-E477. https://doi.org/10.1152/ajpendo.00266.2012
- Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851-863.
- Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860-867. https://doi.org/10.1038/nature05485
- Sutter AG, Palanisamy AP, Lench JH, Jessmore AP, Chavin KD. Development of steatohepatitis in ob/ob mice is dependent on Toll-like receptor 4. Ann Hepatol. 2015;14(5):735-743. https://doi.org/10.1016/S1665-2681(19)30769-0
- Perfield JW 2nd, Ortinau LC, Pickering RT, Ruebel ML, Meers GM, Rector RS. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient ob/ob mice. J Obes. 2013;2013:296537.
- Lauterbach MA, Wunderlich FT. Macrophage function in obesity-induced inflammation and insulin resistance. Pflugers Arch. 2017;469(3-4):385-396. https://doi.org/10.1007/s00424-017-1955-5
- Santin-Marquez R, Alarcon-Aguilar A, Lopez-Diazguerrero NE, Chondrogianni N, Konigsberg M. Sulforaphane - role in aging and neurodegeneration. Geroscience. 2019;41(5):655-670. https://doi.org/10.1007/s11357-019-00061-7
- Angelino D, Jeffery E. Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: focus on glucoraphanin. J Funct Foods. 2014;7:67-76. https://doi.org/10.1016/j.jff.2013.09.029
- Xu L, Nagata N, Ota T. Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte. 2018;7(3):218-225. https://doi.org/10.1080/21623945.2018.1474669
- Galuppo M, Giacoppo S, De Nicola GR, Iori R, Mazzon E, Bramanti P. RS-Glucoraphanin bioactivated with myrosinase treatment counteracts proinflammatory cascade and apoptosis associated to spinal cord injury in an experimental mouse model. J Neurol Sci. 2013;334(1-2):88-96. https://doi.org/10.1016/j.jns.2013.07.2514
- Sotokawauchi A, Ishibashi Y, Matsui T, Yamagishi SI. Aqueous extract of glucoraphanin-rich broccoli sprouts inhibits formation of advanced glycation end products and attenuates inflammatory reactions in endothelial cells. Evid Based Complement Alternat Med. 2018;2018:9823141.
- Vo QV, Nam P, Dinh T, Mechler A, Tran T. Anti-inflammatory activity of synthetic and natural glucoraphanin. J Serbian Chem Soc. 2019;84(5):445-453. https://doi.org/10.2298/jsc180518108v
- Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and done? Targeting the NRF2 pathway with sulforaphane. Trends Food Sci Technol. 2017;69(Pt B):257-269. https://doi.org/10.1016/j.tifs.2017.02.002
- Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol. 2013;250:239-249. https://doi.org/10.1016/j.expneurol.2013.10.002
- Yang G, Lee HE, Lee JY. A pharmacological inhibitor of NLRP3 inflammasome prevents non-alcoholic fatty liver disease in a mouse model induced by high fat diet. Sci Rep. 2016;6(1):1. https://doi.org/10.1038/s41598-016-0001-8
- Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. A procedure to measure the antiradical efficiency of polyphenols. J Sci Food Agric. 1998;76(2):270-276. https://doi.org/10.1002/(SICI)1097-0010(199802)76:2<270::AID-JSFA945>3.0.CO;2-9
- Vuong LD, Nguyen QN, Truong VL. Anti-inflammatory and anti-oxidant effects of combination between sulforaphane and acetaminophen in LPS-stimulated RAW 264.7 macrophage cells. Immunopharmacol Immunotoxicol. 2019;41(3):413-419. https://doi.org/10.1080/08923973.2019.1569049
- Coleman DL. Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia. 1978;14(3):141-148. https://doi.org/10.1007/BF00429772
- Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015;2015:407580. https://doi.org/10.1155/2015/407580
- Yuan H, Yao S, You Y, Xiao G, You Q. Antioxidant activity of isothiocyanate extracts from broccoli. Chin J Chem Eng. 2010;18(2):312-321. https://doi.org/10.1016/S1004-9541(08)60358-4
- Salzano S, Checconi P, Hanschmann EM, Lillig CH, Bowler LD, Chan P, et al. Linkage of inflammation and oxidative stress via release of glutathionylated peroxiredoxin-2, which acts as a danger signal. Proc Natl Acad Sci U S A. 2014;111(33):12157-12162. https://doi.org/10.1073/pnas.1401712111
- MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15(1):323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
- Tripathi P, Tripathi P, Kashyap L, Singh V. The role of nitric oxide in inflammatory reactions. FEMS Immunol Med Microbiol. 2007;51(3):443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
- Mitchell JA, Larkin S, Williams TJ. Cyclooxygenase-2: regulation and relevance in inflammation. Biochem Pharmacol. 1995;50(10):1535-1542. https://doi.org/10.1016/0006-2952(95)00212-X
- Hwang JH, Lim SB. Bin. Antioxidant and anti-inflammatory activities of Broccoli florets in LPS-stimulated RAW 264.7 Cells. Prev Nutr Food Sci. 2014;19(2):89-97. https://doi.org/10.3746/PNF.2014.19.2.089
- Choi WJ, Kim SK, Park HK, Sohn UD, Kim W. Anti-Inflammatory and Anti-Superbacterial Properties of Sulforaphane from Shepherd's Purse. Korean J Physiol Pharmacol. 2014;18(1):33-39. https://doi.org/10.4196/kjpp.2014.18.1.33
- An YW, Jhang KA, Woo SY, Kang JL, Chong YH. Sulforaphane exerts its anti-inflammatory effect against amyloid-β peptide via STAT-1 dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging. 2016;38:1-10. https://doi.org/10.1016/j.neurobiolaging.2015.10.016
- Witte A, Chatterjee M, Lang F, Gawaz M. Platelets as a novel source of pro-inflammatory chemokine CXCL14. Cell Physiol Biochem. 2017;41(4):1684-1696. https://doi.org/10.1159/000471821
- Nara N, Nakayama Y, Okamoto S, Tamura H, Kiyono M, Muraoka M, et al. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J Biol Chem. 2007;282(42):30794-30803. https://doi.org/10.1074/jbc.M700412200
- Roos RS, Loetscher M, Legler DF, Clark-Lewis I, Baggiolini M, Moser B. Identification of CCR8, the receptor for the human CC chemokine I-309. J Biol Chem. 1997;272(28):17251-17254. https://doi.org/10.1074/jbc.272.28.17251
- Heymann F, Hammerich L, Storch D, Bartneck M, Huss S, Russeler V, et al. Hepatic macrophage migration and differentiation critical for liver fibrosis is mediated by the chemokine receptor C-C motif chemokine receptor 8 in mice. Hepatology. 2012;55(3):898-909. https://doi.org/10.1002/hep.24764
- Ajuebor MN, Hogaboam CM, Le T, Proudfoot AE, Swain MG. CCL3/MIP-1α is pro-inflammatory in murine T cell-mediated hepatitis by recruiting CCR1-expressing CD4+ T cells to the liver. Eur J Immunol. 2004;34(10):2907-2918. https://doi.org/10.1002/eji.200425071
- Gilet J, Chang Y, Chenivesse C, Legendre B, Vorng H, Duez C, et al. Role of CCL17 in the generation of cutaneous inflammatory reactions in Hu-PBMC-SCID mice grafted with human skin. J Invest Dermatol. 2009;129(4):879-890. https://doi.org/10.1038/jid.2008.333
- Murdoch C, Finn A. Chemokine receptors and their role in inflammation and infectious diseases. Blood. 2000;95(10):3032-3043. https://doi.org/10.1182/blood.v95.10.3032.010k17_3032_3043
- Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27(1):147-163. https://doi.org/10.1146/annurev.immunol.021908.132629
- Watanabe Y, Suzuki O, Haruyama T, Akaike T. Interferon-gamma induces reactive oxygen species and endoplasmic reticulum stress at the hepatic apoptosis. J Cell Biochem. 2003;89(2):244-253. https://doi.org/10.1002/jcb.10501
- Gjelstrup LC, Boesen T, Kragstrup TW, Jorgensen A, Klein NJ, Thiel S, et al. Shedding of large functionally active CD11/CD18 Integrin complexes from leukocyte membranes during synovial inflammation distinguishes three types of arthritis through differential epitope exposure. J Immunol. 2010;185(7):4154-4168. https://doi.org/10.4049/jimmunol.1000952
- Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell. 2017;170(4):605-635. https://doi.org/10.1016/j.cell.2017.07.029