• Title/Summary/Keyword: TMOSFET

Search Result 7, Processing Time 0.018 seconds

Design of Super-junction TMOSFET with Embedded Temperature Sensor

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.232-236
    • /
    • 2015
  • Super-junction trench MOSFET (SJ TMOSFET) devices are well known for lower specific on-resistance and high breakdown voltage (BV). For a conventional power MOSFET (metal-oxide semiconductor field-effect transistor) such as trench double-diffused MOSFET (TDMOSFET), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a SJ TMOSFET structure is suggested, but sensing the temperature distribution of TMOSFET is very important in the application since heat is generated in the junction area affecting TMOSFET. In this paper, analyzing the temperature characteristics for different number bonding for SJ TMOSFET with an embedded temperature sensor is carried out after designing the diode temperature sensor at the surface of SJ TMOSFET for the class of 100 V and 100 A for a BLDC motor.

Electrothermal Analysis for Super-Junction TMOSFET with Temperature Sensor

  • Lho, Young Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.37 no.5
    • /
    • pp.951-960
    • /
    • 2015
  • For a conventional power metal-oxide-semiconductor field-effect transistor (MOSFET), there is a trade-off between specific on-state resistance and breakdown voltage. To overcome this trade-off, a super-junction trench MOSFET (TMOSFET) structure is suggested; within this structure, the ability to sense the temperature distribution of the TMOSFET is very important since heat is generated in the junction area, thus affecting its reliability. Generally, there are two types of temperature-sensing structures-diode and resistive. In this paper, a diode-type temperature-sensing structure for a TMOSFET is designed for a brushless direct current motor with on-resistance of $96m{\Omega}{\cdot}mm^2$. The temperature distribution for an ultra-low on-resistance power MOSFET has been analyzed for various bonding schemes. The multi-bonding and stripe bonding cases show a maximum temperature that is lower than that for the single-bonding case. It is shown that the metal resistance at the source area is non-negligible and should therefore be considered depending on the application for current driving capability.

Design of Main Body and Edge Termination of 100 V Class Super-junction Trench MOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.565-569
    • /
    • 2018
  • For the conventional power MOSFET (metal-oxide semiconductor field-effect transistor) device structure, there exists a tradeoff relationship between specific on-state resistance (Ron,sp) and breakdown voltage (BV). In order to overcome this tradeoff, a super-junction (SJ) trench MOSFET (TMOSFET) structure with uniform or non-uniform doping concentration, which decreases linearly in the vertical direction from the N drift region at the bottom to the channel at the top, for an optimal design is suggested in this paper. The on-state resistance of $0.96m{\Omega}-cm2$ at the SJ TMOSFET is much less than that at the conventional power MOSFET under the same breakdown voltage of 100V. A design methodology for the edge termination is proposed to achieve the same breakdown voltage and on-state resistance as the main body of the super-junction TMOSFET by using of the SILVACO TCAD 2D device simulator, Atlas.

A Study on Temperature Dependent Super-junction Power TMOSFET

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.163-166
    • /
    • 2016
  • It is important to operate the driving circuit under the optimal condition through precisely sensing the power consumption causing the temperature made mainly by the MOSFET (metal-oxide semiconductor field-effect transistor) when a BLDC (Brushless Direct Current) motor operates. In this letter, a Super-junction (SJ) power TMOSFET (trench metal-oxide semiconductor field-effect transistor) with an ultra-low specific on-resistance of $0.96m{\Omega}{\cdot}cm^2$ under the same break down voltage of 100 V is designed by using of the SILVACO TCAD 2D device simulator, Atlas, while the specific on-resistance of the traditional power MOSFET has tens of $m{\Omega}{\cdot}cm^2$, which makes the higher power consumption. The SPICE simulation for measuring the power distribution of 25 cells for a chip is carried out, in which a unit cell is a SJ Power TMOSFET with resistor arrays. In addition, the power consumption for each unit cell of SJ Power TMOSFET, considering the number, pattern and position of bonding, is computed and the power distribution for an ANSYS model is obtained, and the SJ Power TMOSFET is designed to make the power of the chip distributed uniformly to guarantee it's reliability.

Structure Modeling of 100 V Class Super-junction Trench MOSFET with Specific Low On-resistance

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • For the conventional power metal-oxide semiconductor field-effect transistor (MOSFET) device structure, there exists a tradeoff relationship between specific on-resistance ($R_{ON.SP}$) and breakdown voltage ($V_{BR}$). In order to overcome the tradeoff relationship, a uniform super-junction (SJ) trench metal-oxide semiconductor field-effect transistor (TMOSFET) structure is studied and designed. The structure modeling considering doping concentrations is performed, and the distributions at breakdown voltages and the electric fields in a SJ TMOSFET are analyzed. The simulations are successfully optimized by the using of the SILVACO TCAD 2D device simulator, Atlas. In this paper, the specific on-resistance of the SJ TMOSFET is successfully obtained 0.96 $m{\Omega}{\cdot}cm^2$, which is of lesser value than the required one of 1.2 $m{\Omega}{\cdot}cm^2$ at the class of 100 V and 100 A for BLDC motor.

A Study on Optimal Design of 100 V Class Super-junction Trench MOSFET (비균일 100V 급 초접합 트랜치 MOSFET 최적화 설계 연구)

  • Lho, Young Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.109-114
    • /
    • 2013
  • Power MOSFET (metal-oxide semiconductor field-effect transistor) are widely used in power electronics applications, such as BLDC (Brushless Direct Current) motor and power module, etc. For the conventional power MOSFET device structure, there exists a tradeoff relationship between specific on-state resistance and breakdown voltage. In order to overcome the tradeoff relationship, a non-uniform super-junction (SJ) trench MOSFET (TMOSFET) structure for an optimal design is proposed in this paper. It is required that the specific on-resistance of non-uniform SJ TMOSFET is less than that of uniform SJ TMOSFET under the same breakdown voltage. The idea with a linearly graded doping profile is proposed to achieve a much better electric field distribution in the drift region. The structure modelling of a unit cell, the characteristic analyses for doping density, and potential distribution are simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the non-uniform SJ TMOSFET shows the better performance than the uniform SJ TMOSFET in the specific on-resistance at the class of 100V.

Design of 100-V Super-Junction Trench Power MOSFET with Low On-Resistance

  • Lho, Young-Hwan;Yang, Yil-Suk
    • ETRI Journal
    • /
    • v.34 no.1
    • /
    • pp.134-137
    • /
    • 2012
  • Power metal-oxide semiconductor field-effect transistor (MOSFET) devices are widely used in power electronics applications, such as brushless direct current motors and power modules. For a conventional power MOSFET device such as trench double-diffused MOSFET (TDMOS), there is a tradeoff relationship between specific on-state resistance and breakdown voltage. To overcome the tradeoff relationship, a super-junction (SJ) trench MOSFET (TMOSFET) structure is studied and designed in this letter. The processing conditions are proposed, and studies on the unit cell are performed for optimal design. The structure modeling and the characteristic analyses for doping density, potential distribution, electric field, width, and depth of trench in an SJ TMOSFET are performed and simulated by using of the SILVACO TCAD 2D device simulator, Atlas. As a result, the specific on-state resistance of 1.2 $m{\Omega}-cm^2$ at the class of 100 V and 100 A is successfully optimized in the SJ TMOSFET, which has the better performance than TDMOS in design parameters.