• Title/Summary/Keyword: TLD(Tuned Liquid Damper)

Search Result 42, Processing Time 0.021 seconds

Experimental study on a new damping device for mitigation of structural vibrations under harmonic excitation

  • Alih, Sophia C.;Vafaei, Mohammadreza;Ismail, Nufail;Pabarja, Ali
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.567-576
    • /
    • 2018
  • This manuscript introduces a new damping device which is composed of a water tank and a pendulum. The new damping device can be tuned to multiple frequencies. In addition, it has a higher energy dissipation capacity when compared with the conventional Tuned Liquid Dampers (TLDs). In order to evaluate the efficiency of this new damping device a series of free vibration and forced vibration tests were conducted on a scaled down single-story one-bay steel frame. Two different configurations were studied for the mass of the pendulum that included a completely and a partially submerged mass. It was observed that the completely submerged configuration led to 44% higher damping ratio when compared with the conventional TLD. In addition, the completely submerged configuration reduced the peak displacement response of the structure 1.6 times more than the conventional TLD. The peak acceleration response of the structure equipped with the new damping device was reduced twice more than the conventional TLD. It was also found that, when the excitation frequency is lower than the resonance frequency, the conventional TLD performs better than the partially submerged configuration of the new damping device.

Application of Adaptive Control for the U Type TLD (U자형 TLD시스템에 대한 적응제어 적용)

  • Ga, Chun-Sik;Shin, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.518-521
    • /
    • 2005
  • The Structures or buildings nowadays draw more complexity in design due to space limitation and other factor that affect the height and dimensions, that results to instability. So the various methods have been carried out to improve the safety factor from an earthquake or a boom until recently. But, it is very hard to get model precisely because these structures are the non-linear and multi-variable systems. For this reason, we developed the active control system that is applied the adaptive control method on the U type Tuned Liquid Damper(TLD) passive control system. It is proven that the proposed active control strategy of the plate carrying U type TLD system is the more effective control method to suppress the vibration of the structure. The entire hybrid control system is composed of the actuator acted in the opposite direction of the TLD system's motion direction and the active control device with an air pressure adjuster. This paper proposed the adaptive control methods to improve the problem of U type TLD system which is used widely for the passive control of the building. And it is proved by the simulation. In advanced, it is developed the pressure control method that is improved the hybrid controller's performance by using air chamber pressure controller. These methods take the advantage of the decrease of the maximum displacement by using the controller as soon as the impact is loaded. This is a very important element for the safety design and economic design of structures.

  • PDF

Parametric Analysis of Damping Performance of TLD for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 감쇠성능 파라메트릭 해석)

  • Lee, Jae-Hoon;Park, Seong-Woo;Cho, Jin-Rae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.783-788
    • /
    • 2007
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building. The parameter of interest was chosen by the height of the water level and the frequency of input seismic wave in the same shape of water tank.

  • PDF

Experimental study on TLDs equipped with an upper mounted baffle

  • Shad, Hossein;Adnan, Azlan bin;Vafaei, Mohammadreza;Behbahani, Hamid Pesaran;Oladimeji, Abdulkareem M.
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.37-51
    • /
    • 2018
  • Tuned Liquid Dampers (TLDs) have gained wide acceptance as a system for structural control and energy dissipation. However, they face limitation caused by low damping in deep water, which affects their efficiency. Another problem with deep water TLDs is that not all water depth participates in energy dissipation. This paper investigated the effect of upper mounted baffles on the effectiveness of TLDs. The Vertical Blockage Ratio (VBR) of baffles ranged from 10% - 90%. The TLD (with and without baffle), structure, and combined structure with TLD (with and without baffles) were subjected to free and harmonic forced vibrations. Results indicated that baffles could significantly enhance the energy dissipation of TLDs, thus reducing structural responses more than structures equipped with ordinary TLDs. It was found that, there was an optimum value of VBR in which the TLD's efficiency was maximized. When TLD had an appropriate VBR, the structural acceleration and displacement responses were suppressed significantly up to 51% and 56%, respectively.

Seismic Response Control Performance of Linear and Nonlinear TLD Models (선형 및 비선형 TLD의 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Woo, Sung-Sik;Chung, Lan
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.519-526
    • /
    • 2006
  • This paper compares the seismic response control performance of linear and non-linear models fer tuned liquid damper (TLD). The existing linear and nonlinear TLD models were used for the numerical analysis of single degree of freedom (SDOF) and multi degree of freedom (MDOF) systems with TLD. The nonlinear model considers the variation of the frequency and damping of the TLD with varying excitation amplitude while the linear one has the invariant parameters. Numerical analysis results from SDOF systems indicate that the nonlinear model shows about 5% better control performance than linear one when the mass ratio is 2% and the optimal parameters for reducing peak responses are dependent on the characteristics of the excitation earthquake loads.

  • PDF

Experimental Verification for the Control Performance of a TLD by Using Real-Time Hybrid Shaking Table Testing Method (실시간 하이브리드 진동대 실험법을 이용한 TLD 제어성능의 실험적 검증)

  • Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Chun, Lan;Woo, Sung-Sik;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.419-427
    • /
    • 2006
  • In this paper, an experimental real-time hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. The control force acting between their interface is measured with a shear-type load-cell which is mounted on the shaking table. The shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

OPTIMAL VIBRATION CONTROL OF LARGE STRUCTURES (대형 구조물의 최적 진동제어)

  • 윤정방;김상범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.156-161
    • /
    • 1992
  • Over the past twenty years, the concept of structural control has been investigated for the application to large civil engineering structures. At the early years, passive control systems, such as tuned mass damper(TMD) and tuned liquid mass bamper(TLD), have been utilized to reduce the wind induced vibrations of tall buildings, decks and pylons of long-span bridges. More recently, the active control concept has been applied to reducing the structural vibration and increasing the human comfortness in tall buildings during strong wind. In this study, the effectiveness of the active tuned mass damper(ATMD) has been investigated for reducing vibration of large structures during strong earthquake. Stochastic optimal control theory has been employed. Example analyses are carried out through analytical simulation studies.

  • PDF

Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations

  • Shad, Hossein;Adnan, Azlan;Behbahani, Hamid Pesaran;Vafaei, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Tuned Liquid Dampers (TLDs) provide low damping when it comes to deep water condition, and that not all water depth is mobilized in energy dissipation. This research focussed on a method to improve the efficiency of TLDs with deep water condition. Several bottom-mounted baffles were installed inside a TLD and the dynamic characteristics of modified TLDs together with their effect on the vibration control of a SDOF structure were studied experimentally. A series of free vibration and harmonic forced vibration tests were carried out. The controlling parameter in the conducted tests was the Vertical Blocking Ratio (VBR) of baffles. Results indicated that increase in VBR decreases the natural frequency of TLD and increases its damping ratio. It was found that the VBR range of 10% to 30% reduced response of the structure significantly. The modified TLD with the VBR of 30% showed the best performance when reduction in structural responses under harmonic excitations were compared.

Reducing bi-directional response of SDOF building by new type Tuned Liquid Damper (새로운 형태의 동조액체댐퍼에 의한 단자유도 건물의 양방향 응답제어)

  • Lee, Hye-Ri;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.778-782
    • /
    • 2010
  • 본 논문에서는 TLD와 TLCD를 사용한 하나의 액체 감쇠기를 이용하여 건물의 양방향 응답 제어를 연구하였다. 초고층 건물이 풍하중을 받을때는 풍방향과 풍직각방향으로 진동하여 두 개의 댐퍼를 필요로 한다. 이 논문에서 제안된 댐퍼는 건물의 양방향 응답을 하나의 감쇠기로 제어할 수 있다는 장점이 있다. 이 댐퍼의 TLCD는 건물의 주축방향으로 TLD는 주축으로 직각되는 다른 방향으로 거동을 하게 된다. 실험을 통해 양방향 감쇠기를 사용하여 건물의 양방향 응답제어를 증명하였다. 첫 번째로 양방향 감쇠기에 의한 건물의 응답제어를 알기 위한 진동대 실험을 실시하였다. 진동대 가속도를 입력으로 하고 단자유도 건물의 가속도를 출력으로 하는 전달함수를 통해 결과를 나타내었다. 실험 결과 이 연구에서 제안된 감쇠기는 단자유도 건물의 양방향 응답을 제어하였고, 비틀림 응답도 제어 하였다.

  • PDF

Earthquake Response Control of a Building with a Tuned Liquid Damper Using Hybrid Experiment Method (하이브리드 실험법을 이용한 TLD가 설치된 건물의 지진응답 제어)

  • Lee, Sung-Kyung;Lee, Sang-Hyun;Min, Kyung-Won;Park, Eun-Churn;Woo, Sung-Sik;Chung, Lan;Youn, Kyung-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.527-534
    • /
    • 2006
  • A real-time hybrid method, in which the experimental implementation and the numerical computation of a structure are simultaneously carried out in real-time and combined on-line, has been used as a dynamic testing technique of structure to investigate its dynamic behaviors. In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF