• Title/Summary/Keyword: THz

Search Result 250, Processing Time 0.028 seconds

Spectral Properties of THz-Periodic Metallic Structures

  • Kang, Chul;Kee, Chul-Sik;Sohn, Ik-Bu;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.196-199
    • /
    • 2008
  • We have investigated spectral properties of the periodic arrays of aluminum rods and holes on papers using the terahertz time-domain spectroscopy. The size of a rod(hole) is $600{\mu}m{\times}100{\mu}m$ and the spacing is $300{\mu}m$. The samples were fabricated by a femtosecond laser micromachining system. The periodic arrays of aluminum rods exhibit high reflection around 0.25 THz when the polarization of the THz pulse is parallel to the long axis of the rod, whereas the periodic arrays of holes exhibit high transmission around 0.25 THz when the polarization of the THz pulse is perpendicular to the long axis of the hole.

THz near-field microsope with nanameter resolution (나노미터 분해능을 갖는 테라헤르츠 근접장 현미경)

  • Park, Hong-Kyu;Kim, Jeong-Hoi;Lee, Kyung-In;Han, Hae-Wook
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.515-516
    • /
    • 2006
  • A THz near-field microscope(THz NFM) is developed by a combination of THz time-domain spectroscopy and AFM(Atomic Force Microscopy). We have observed 80nm lateral resolution, demonstrating that the THz NFM technique has a great potential as a important probing tool for the analysis of the biological and semiconductor nanostructures.

  • PDF

Trends in Terahertz Imaging Technology (테라헤르츠 이미징 기술 개발 동향)

  • Choi, D.H.;Shin, J.H.;Lee, E.S.;Moon, K.W.;Lee, I.M.;Park, D.W.;Kim, H.S.;Kim, M.G.;Choi, K.S.;Park, K.H.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.5
    • /
    • pp.26-35
    • /
    • 2019
  • Modern imaging technologies utilizing electromagnetic waves are indispensable in our daily lives. Applications, such as television and smartphone screens, radar imaging for weather forecast, and medical imaging, can be attributed to technology developments in various electromagnetic regions. Terahertz (THz) waves, electromagnetic (EM) waves located between far infrared and microwave regions, had left unexplored EM waves. Recent advances in technology have led to various two-dimensional and three-dimensional THz imaging techniques. In this article, we explain THz imaging techniques as well as the experimental results from our laboratory. Additionally, we introduce commercial THz cameras developed worldwide. Finally, we present the applications of THz imaging techniques.

Terahertz Characteristics of Hydroxygraphene Based on Microfluidic Technology

  • Boyan Zhang;Siyu Qian;Bo Peng;Bo Su;Zhuang Peng;Hailin Cui;Shengbo Zhang;Cunlin Zhang
    • Current Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.463-470
    • /
    • 2023
  • Hydroxygraphene as a kind of functionalized graphene has important applications in composite, photoelectric and biological materials. In the present study, THz and microfluidic technologies were implemented to study the THz transmission characteristics of hydroxygraphene with different concentrations and residence times in magnetic and electric fields. The results show that the THz transmission intensity decreases with the increase in sample concentration and duration of an applied electric field, while it increases by staying longer in the magnetic field. The phenomenon is analyzed and explained in terms of hydrogen bond, conductivity and scattering characteristics. The results establish a foundation for future research on the THz absorption characteristics of liquid graphene based on microfluidic technology in different external environments. It also provides technical support for the application and development of graphene in THz devices.

Localisation of embedded water drop in glass composite using THz spectroscopy

  • Mieloszyk, Magdalena;Majewska, Katarzyna;Ostachowicz, Wieslaw
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.751-759
    • /
    • 2018
  • Glass fibre reinforced polymers (GFRP) are widely exploited in many industrial branches. Due to this Structural Health Monitoring systems containing embedded fibre optics sensors are applied. One of the problems that can influence on composite element durability is water contamination that can be introduced into material structure during manufacturing. Such inclusion can be a damage origin significantly decreasing mechanical properties of an element. A non-destructive method that can be applied for inspection of an internal structure of elements is THz spectroscopy. It can be used for identifications of material discontinuities that results in changes of absorption, refractive index or scattering of propagating THz waves. The limitations of THz propagation through water makes this technique a promising solution for detection of a water inclusion. The paper presents an application of THz spectroscopy for detection and localisation of a water drop inclusion embedded in a GFRP material between two fibre optics with fibre Bragg grating sensors. The proposed filtering method allowed to determine a 3D shape of the water drop.

Terahertz Spectral Characteristics of Electrolyte Solutions under Different Magnetic Fields

  • Shao, Siyu;Huang, Haiyun;Peng, Bo;Wang, Guoyang;Ye, Ping;Wang, Jiahui;Su, Bo;Cui, Hailin;Zhang, Cunlin
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.337-343
    • /
    • 2022
  • Microfluidic chips are new devices that can manipulate liquids at the micrometer level, and terahertz (THz) time-domain spectroscopy has good applicability in biochemical detection. The combination of these two technologies can shorten the distance between sample and THz wave, reduce THz wave absorption by water, and more effectively analyze the kinetics of biochemical reactions in aqueous solutions. This study investigates the effects of different external magnetic field intensities on the THz transmission characteristics of deionized water, CuSO4, CuCl2, (CH3COO)2Cu, Na2SO4, NaCl, and CH3COONa; the THz spectral intensity of the sample solutions decrease with increasing intensity of the applied magnetic field. Analysis shows that the magnetic field leads to a change in the dipole moment of water molecules in water and electrolyte solutions, which enhances not only the hydrogen-bond networking ability of water but also the hydration around ions in electrolyte solutions, increasing the number of hydrogen bonds. Increasing the intensity of this magnetic field further promotes the hydrogen-bond association between water molecules, weakening the THz transmission intensity of the solution.

Terahertz Generation and Detection Characteristics of InGaAs

  • Park, Dong-U;Han, Im-Sik;Kim, Chang-Su;No, Sam-Gyu;Ji, Yeong-Bin;Jeon, Tae-In;Lee, Gi-Ju;Kim, Jin-Su;Kim, Jong-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.161-161
    • /
    • 2012
  • 본 연구에서는 InGaAs을 이용한 테라헤르쯔(THz) 발생과 검출 특성을 GaAs에 의한 특성과 비교, 조사하였다. 고온성장(HTG, $530^{\circ}C$) InGaAs를 이용하여 photo-Dember (pD) 효과(표면방출)에 의한 THz 발생 특성을 조사하였으며, THz 검출 특성에는 저온성장(LTG, $530^{\circ}C$) InGaAs: Be을 이용하였다. HTG-InGaAs 기판 위에 패턴한 금속전극 (Ti/Au, ${\sim}500{\times}500{\mu}m$)의 가장자리에 Ti: Sapphire fs 펄스 레이저(30 ps/90 MHz)를 조사하여 LTG-GaAs 수신기(Rx)로 THz를 검출, 전류신호(a)와 Fourier transform (FT) 주파수 스펙트럼(b)을 얻었다. HTG-InGaAs에서 얻은 파형은 SI-GaAs에서와 거의 비슷한 모양이었으나, 주파수 범위(0.5~2 THz)는 SI-GaAs의 1~3 THz 보다 좁고 FT 스펙트럼의 세기는 약 1/8 정도로 낮았다. LTG-InGaAs 수신기 (Rx)의 안테나는 쌍극자 ($5/20{\mu}m$) 형태를 가지고 있으며, SI-GaAs Tx로 발생시킨 광원을 사용하여 THz 영역의 검출 특성을 조사하였다. HTG-InGaAs Tx 및 LTG-InGaAs Rx의 이득은 각각 약 $5{\times}10^{-8}$ A/W과 $2.5{\times}10^{-8}$ A/W인 것으로 분석되었다.

  • PDF

Optical Characteristics of Bolometric Terahertz Sensor (볼로미터형 테라헤르츠 센서의 광학적 특성 연구)

  • Han, Myung Soo;Song, Woosub;Hong, Jung Taek;Lee, Donghee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.335-339
    • /
    • 2018
  • The optical characteristics of a terahertz (THz) antenna-coupled bolometer (ACB) detector were evaluated using a pulsed quantum cascade laser (QCL) and radiation blackbody sources. We investigated a method for measuring the responsivity and noise-equivalent power (NEP) of the THz detector using two different types of light sources. When using a QCL source with a frequency of 3 THz, the average responsivity of 24 devices was $1.44{\times}10^3V/W$ and the average NEP of those devices was $3.33{\times}10^{-9}W/{\surd}Hz$. The average responsivity and NEP as measured by blackbody source were $1.79{\times}10^5V/W$ and $6.51{\times}10^{-11}W/{\surd}Hz$, respectively, with the measured values varying depending on the light source. This was because the output power of each light source was different, with the laser source being driven by a pulse type wave and the blackbody source being driven by a continuous wave. The power input to the THz sensor was also different. Futhermore, the responsivity and NEP values measured using band pass filter (BPF) were similar to those measured when using only THz windows. It was found that ACB sensor responds normally in the THz region to both the laser and the blackbody source, and the method was confirmed to effectively evaluate the characteristics of the THz sensor.

Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.831-838
    • /
    • 2018
  • Trophic interactions of introduced biocontrol fungi with soil animals can be a key determinant in the fungal proliferation and activity. This study investigated the trophic interaction of an introduced biocontrol fungus with soil nematodes. The biocontrol fungus Trichoderma harzianum ThzID1-M3 and the fungivorous nematode Aphelenchoides sp. (10 per gram of soil) were added to nonsterile soil, and microbial populations were monitored for 40 days. Similar results were obtained when the experiment was duplicated. ThzID1-M3 stimulated the population growth of indigenous nematodes (p < 0.05), regardless of whether Aphelenchoides sp. was added. Without ThzID1-M3, indigenous nematodes did not increase in number and the added Aphelenchoides sp. nematodes almost disappeared by day 10. With ThzID1-M3, population growth of nematodes was rapid between 5 and 10 days after treatment. ThzID1-M3 biomass peaked on day 5, dropped at day 10, and then almost disappeared at day 20, which was not influenced by the addition of nematodes. In contrast, a large quantity of ThzID1-M3 hyphae were present in a heat-treated soil in which nematodes were eliminated. Total fungal biomass in all treatments peaked on day 5 and subsequently decreased. Addition of nematodes increased the total fungal biomass (p < 0.05), but ThzID1-M3 addition did not affect the fungal biomass. Hyphae of total fungi when homogenously distributed did not support the nematode population growth; however, hyphae of the introduced fungus did when densely localized. The results suggest that soil fungivorous nematodes are an important constraint on the hyphal proliferation of fungal agents introduced into natural soils.

Terahertz Wave Generation via Stimulated Polariton Scattering in BaTiO3 Bulk Crystal with High Parametric Gain

  • Li, Zhongyang;Yuan, Bin;Wang, Silei;Wang, Mengtao;Bing, Pibin
    • Current Optics and Photonics
    • /
    • v.2 no.3
    • /
    • pp.261-268
    • /
    • 2018
  • Stimulated polariton scattering (SPS) from the $A_1$ transverse optical (TO) modes of $BaTiO_3$ bulk crystal generating a terahertz (THz) wave with the noncollinear phase-matching (NPM) condition is theoretically investigated. To our best knowledge, this is the first report on THz wave generation from $BaTiO_3$ bulk crystal via SPS. Phase-matching (PM) characteristics in the NPM configuration are analyzed. Effective parametric gain lengths for the Stokes and THz waves in the NPM configuration are calculated. The effective parametric gain coefficient and absorption coefficient of the THz wave in $BaTiO_3$ are theoretically simulated. The THz phonon flux densities generated via SPS in $BaTiO_3$ are theoretically calculated by solving the coupled wave equations under the NPM condition. The PM characteristics and THz-wave parametric gain characteristics in $BaTiO_3$ are compared to those in $MgO:LiNbO_3$. The results of the analysis indicate that $BaTiO_3$ is an attractive optical crystal for efficient THz wave generation via SPS.