DOI QR코드

DOI QR Code

Terahertz Wave Generation via Stimulated Polariton Scattering in BaTiO3 Bulk Crystal with High Parametric Gain

  • Li, Zhongyang (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Yuan, Bin (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Silei (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Wang, Mengtao (College of Electric Power, North China University of Water Resources and Electric Power) ;
  • Bing, Pibin (College of Electric Power, North China University of Water Resources and Electric Power)
  • Received : 2018.02.07
  • Accepted : 2018.05.15
  • Published : 2018.06.25

Abstract

Stimulated polariton scattering (SPS) from the $A_1$ transverse optical (TO) modes of $BaTiO_3$ bulk crystal generating a terahertz (THz) wave with the noncollinear phase-matching (NPM) condition is theoretically investigated. To our best knowledge, this is the first report on THz wave generation from $BaTiO_3$ bulk crystal via SPS. Phase-matching (PM) characteristics in the NPM configuration are analyzed. Effective parametric gain lengths for the Stokes and THz waves in the NPM configuration are calculated. The effective parametric gain coefficient and absorption coefficient of the THz wave in $BaTiO_3$ are theoretically simulated. The THz phonon flux densities generated via SPS in $BaTiO_3$ are theoretically calculated by solving the coupled wave equations under the NPM condition. The PM characteristics and THz-wave parametric gain characteristics in $BaTiO_3$ are compared to those in $MgO:LiNbO_3$. The results of the analysis indicate that $BaTiO_3$ is an attractive optical crystal for efficient THz wave generation via SPS.

Keywords

References

  1. K. Kawase, J. Shikata, and H. Ito, "Terahertz wave parametric source," J. Phys D: Appl. Phys. 35, R1-R14 (2002). https://doi.org/10.1088/0022-3727/35/3/201
  2. T. Ikari, X. Zhang, H. Minamide, and H. Ito, "THz-wave parametric oscillator with a surface-emitted configuration," Opt. Express 14, 1604-1610 (2006). https://doi.org/10.1364/OE.14.001604
  3. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "THz polariton laser using an intracavity $Mg:LiNbO_3$ crystal with protective Teflon coating," Opt. Express 25, 3991-3999 (2017). https://doi.org/10.1364/OE.25.003991
  4. R. Zhang, Y. Qu, W. Zhao, and Z. Chen, "High energy, widely tunable Si-prism-array coupled terahertz-wave parametric oscillator with a deformed pump and optimal crystal location for angle tuning," Appl. Opt. 56, 2412-2417 (2017). https://doi.org/10.1364/AO.56.002412
  5. Y. Wang, L. Tang, D. Xu, C. Yan, Y. He, J. Shi, D. Yan, H. Liu, M. Nie, J. Feng, and J. Yao, "Energy scaling and extended tunability of terahertz wave parametric oscillator with MgO-doped near-stoichiometric $LiNbO_3$ crystal," Opt. Express 25, 8926-8936 (2017). https://doi.org/10.1364/OE.25.008926
  6. H. Jang, G. Strömqvist, V. Pasiskevicius, and C. Canalias, "Control of forward stimulated polariton scattering in periodically-poled KTP crystals," Opt. Express 21, 27277-27283 (2013). https://doi.org/10.1364/OE.21.027277
  7. H. Jang, A. Viotti, G. Stromqvist, A. Zukauskas, C. Canalias, and V. Pasiskevicius, "Counter-propagating parametric interaction with phonon-polaritons in periodically poled $KTiOPO_4$," Opt. Express 25, 2677-2686 (2017). https://doi.org/10.1364/OE.25.002677
  8. S. S. Sussman, "Tunable light scattering from transverse optical modes in lithium niobate," Stanford University, Stanford, California, Microwave Laboratory Report No. 1851 (1970).
  9. W. Wang, Z. Cong, X. Chen, X. Zhang, Z. Qin, G. Tang, N. Li, C. Wang, and Q. Lu, "Terahertz parametric oscillator based on $KTiOPO_4$ crystal," Opt. Lett. 39, 3706-3709 (2014). https://doi.org/10.1364/OL.39.003706
  10. W. Wang, Z. Cong, Z. Liu, X. Zhang, Z. Qin, G. Tang, N. Li, Y. Zhang, and Q. Lu, "THz-wave generation via stimulated polariton scattering in $KTiOAsO_4$ crystal," Opt. Express 22, 17092-17098 (2014). https://doi.org/10.1364/OE.22.017092
  11. A. J. Lee and H. M. Pask, "Continuous wave, frequency-tunable terahertz laser radiation generated via stimulated polariton scattering," Opt. Lett. 39, 442-445 (2014). https://doi.org/10.1364/OL.39.000442
  12. T. A. Ortega, H. M. Pask, D. J. Spence, and A. J. Lee, "Stimulated polariton scattering in an intracavity $RbTiOPO_4$ crystal generating frequency-tunable THz output," Opt. Express 24, 10254-10264 (2016). https://doi.org/10.1364/OE.24.010254
  13. T. D. Wang, Y. C. Huang, M. Y. Chuang, Y. H. Lin, C. H. Lee, Y. Y. Lin, F. Y. Lin, and G. Kh. Kitaeva, "Long range parametric amplification of THz wave with absorption loss exceeding parametric gain," Opt. Express 21, 2452-2462 (2013). https://doi.org/10.1364/OE.21.002452
  14. J. A. Sanjurjo, R. S. Katiyar, and S. P. S. Porto, "Temperature dependence of dipolar modes in ferroeiectric $BaTiO_3$ by infrared studies," Phys. Rev. B 22, 2396-2403 (1980). https://doi.org/10.1103/PhysRevB.22.2396
  15. A. Pinczuk, W. Taylor, and E. Burstein, "The Raman spectrum of $BaTiO_3$," Solid State Commun. 5, 429-433 (1967). https://doi.org/10.1016/0038-1098(67)90791-0
  16. A. Scalabrin, A. S. Chaves, D. S. Shim, and S. P. S. Porto, "Temperature dependence of the $A_1$ and E optical phonons in $BaTiO_3$," Phys. Stat. Sol. (b) 79, 731-742 (1977). https://doi.org/10.1002/pssb.2220790240
  17. D. E. Zelmon, D. L. Small, and P. Schunemann, "Refractive index measurements of barium titanate from .4 to 5.0 microns and implications for periodically poled frequency conversion devices," MRS Online Proc. Libr. 484, 537-541 (1997). https://doi.org/10.1557/PROC-484-537
  18. D. N. Nikogosyan, Nonlinear optical crystals: a complete survey, Springer Science & Business Media, 2006.
  19. T. F. Boggess, J. O. White, and G. C. Valley, "Two-photon absorption and anisotropic transient energy transfer in $BaTiO_3$ with 1-psec excitation," J. Opt. Soc. Am. B 7, 2255-2258 (1990). https://doi.org/10.1364/JOSAB.7.002255
  20. G. A. Brost, R. A. Motes, and J. R. Rotge, "Intensity-dependent absorption and photorefractive effects in barium titanate," J. Opt. Soc. Am. B 5, 1879-1885 (1988). https://doi.org/10.1364/JOSAB.5.001879
  21. J. B. Khurgin, D. Yang, and Y. J. Ding, "Generation of mid-infrared radiation in the highly-absorbing nonlinear medium," J. Opt. Soc. Am. B 18, 340-343 (2001). https://doi.org/10.1364/JOSAB.18.000340
  22. Y. J. Ding, "Efficient generation of high-frequency terahertz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry," Opt. Lett. 35, 262-264 (2010). https://doi.org/10.1364/OL.35.000262
  23. Y. J. Ding, "Efficient generation of far-infrared radiation from a periodically poled $LiNbO_3$ waveguide based on surface-emitting geometry," J. Opt. Soc. Am. B 28, 977-981 (2011). https://doi.org/10.1364/JOSAB.28.000977
  24. S. J. Brosnan and R. L. Byer, "Optical parametric oscillator threshold and linewidth studies," IEEE J. Quantum Electron. 15, 415-431 (1979). https://doi.org/10.1109/JQE.1979.1070027
  25. Y. Takida, J. Shikata, K. Nawata, Y. Tokizane, Z. Han, M. Koyama, T. Notake, S. Hayashi, and H. Minamide, "Terahertz-wave parametric gain of stimulated polariton scattering," Phys. Rev. A 93, 043836 (2016). https://doi.org/10.1103/PhysRevA.93.043836
  26. D. A. Walsh, Intracavity terahertz optical parametric oscillators (Doctoral dissertation, University of St Andrews, 2011).
  27. U. T. Schwarz and M. Maier, "Damping mechanisms of phonon polaritons, exploited by stimulated Raman gain measurements," Phys. Rev. B 58, 766-775 (1998). https://doi.org/10.1103/PhysRevB.58.766
  28. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988), Chapter 16.
  29. W. D. Johnston and I. P. Kaminow, "Contributions to optical nonlinearity in GaAs as determined from Raman scattering efficiencies," Phys. Rev. 188, 1209-1211 (1969). https://doi.org/10.1103/PhysRev.188.1209
  30. A. R. Johnston and J. M. Weingart, "Determination of the low-frequency linear electro-optic effect in tetragonal $BaTiO_3$," J. Opt. Soc. Am. 55, 828-834 (1965). https://doi.org/10.1364/JOSA.55.000828
  31. W. Shi, Y. J. Ding, N. Fernelius, and K. L. Vodopyanov, "An efficient, tunable, and coherent 0.18-5.27 THz source based on GaSe crystal," Opt. Lett. 27, 1454-1456 (2002). https://doi.org/10.1364/OL.27.001454
  32. Y. J. Ding, "Efficient generation of high-Power quasi-single-cycle THz pulses from single infrared beam in second-order nonlinear medium," Opt. Lett. 29, 2650-2652 (2004). https://doi.org/10.1364/OL.29.002650
  33. Y. J. Ding, "Quasi-single-cycle THz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: High output powers and conversion efficiencies," IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004). https://doi.org/10.1109/JSTQE.2004.837205
  34. S. Hayashi, K. Nawata, T. Taira, J. Shikata, K. Kawase, and H. Minamide, "Ultrabright continuously tunable terahertz-wave generation at room temperature," Sci. Rep. 4, 5045 (2014).
  35. G. Kh. Kitaeva and A. N. Penin, "Parametric frequency conversion in layered nonlinear media," J. Exp. Theor. Phys. 98, 272-286 (2004). https://doi.org/10.1134/1.1675895