DOI QR코드

DOI QR Code

Performance Prediction of a Laser-guide Star Adaptive Optics System for a 1.6 m Telescope

  • Received : 2018.05.10
  • Accepted : 2018.05.24
  • Published : 2018.06.25

Abstract

We are currently investigating the feasibility of a 1.6 m telescope with a laser-guide star adaptive optics (AO) system. The telescope, if successfully commissioned, would be the first dedicated adaptive optics observatory in South Korea. The 1.6 m telescope is an f/13.6 Cassegrain telescope with a focal length of 21.7 m. This paper first reviews atmospheric seeing conditions measured over a year in 2014~2015 at the Bohyun Observatory, South Korea, which corresponds to an area from 11.6 to 21.6 cm within 95% probability with regard to the Fried parameter of 880 nm at a telescope pupil plane. We then derive principal seeing conditions such as the Fried parameter and Greenwood frequency for eight astronomical spectral bands (V/R/I/J/H/K/L/M centered at 0.55, 0.64, 0.79, 1.22, 1.65, 2.20, 3.55, and $4.77{\mu}m$). Then we propose an AO system with a laser guide star for the 1.6 m telescope based on the seeing conditions. The proposed AO system consists of a fast tip/tilt secondary mirror, a $17{\times}17$ deformable mirror, a $16{\times}16$ Shack-Hartmann sensor, and a sodium laser guide star (589.2 nm). The high order AO system is close-looped with 2 KHz sampling frequency while the tip/tilt mirror is independently close-looped with 63 Hz sampling frequency. The AO system has three operational concepts: 1) bright target observation with its own wavefront sensing, 2) less bright star observation with wavefront sensing from another bright natural guide star (NGS), and 3) faint target observation with tip/tilt sensing from a bright natural guide star and wavefront sensing from a laser guide star. We name these three concepts 'None', 'NGS only', and 'LGS + NGS', respectively. Following a thorough investigation into the error sources of the AO system, we predict the root mean square (RMS) wavefront error of the system and its corresponding Strehl ratio over nine analysis cases over the worst ($2{\sigma}$) seeing conditions. From the analysis, we expect Strehl ratio >0.3 in most seeing conditions with guide stars.

Acknowledgement

Supported by : LigNex1 (Ltd)

References

  1. J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993). https://doi.org/10.1146/annurev.aa.31.090193.000305
  2. R. K. Tyson, Principles of Adaptive Optics (CRC Press, Boca Raton, FL, USA, 2015).
  3. S. S. Olivier, D. T. Gavel, H. W. Friedman, C. E. Max, J. R. An, K. Avicola, B. J. Bauman, J. M. Brase, E. W. Campbell, C. J. Carrano, J. B. Cooke, G. J. Freeze, E. L. Gates, V. K. Kanz, T. C. Kuklo, B. A. Macintosh, M. J. Newman, E. L. Pierce, K. E. Waltjen, and J. A. Watson, "Improved performance of the laser guide star adaptive optics system at Lick Observatory," Proc. SPIE 3762, 2-7 (1999).
  4. W. C. Rao, Y. Bo, C. Li, M. Li, X, Zhang, A. Zhang, C. Guan, L. Zhou, S. Chen, X. Hao, W. Ma, and Y. Zhang, "A sodium guide star adaptive optics system for the 1.8 meter telescope," Proc. SPIE 8447, 84474K (2012).
  5. C. d'Orgeville and G. J. Fetzer, "Four generations of sodium guide star lasers for adaptive optics in astronomy and space situational awareness," Proc. SPIE 9909, 99090R (2016).
  6. R. K. Tyson, "Adaptive optics system performance approximations for atmospheric turbulence correction," Opt. Eng. 29, 1165-1173 (1990). https://doi.org/10.1117/12.55711
  7. D. T. Gavel, J. R. Morris, and R. G. Vernon, "Systematic design and analysis of laser-guide-star adaptive-optics systems for large telescopes," J. Opt. Soc. Am. A 11, 914-924 (1994). https://doi.org/10.1364/JOSAA.11.000914
  8. B. W. Frazier, M. Smith, and R. K. Tyson, "Performance of a compact adaptive-optics system," Appl. Opt. 43, 4281-4287 (2004). https://doi.org/10.1364/AO.43.004281
  9. M. A. van Dam, D. Le Mignant, and B. A. Macintosh, "Performance of the Keck Observatory adaptive-optics system," Appl. Opt. 43, 5458-5467 (2004). https://doi.org/10.1364/AO.43.005458
  10. J. H. Lee, S. Shin, G. N. Park, H. Rhee, and H. Yang, "Atmospheric turbulence simulator for adaptive optics evaluation on an optical test bench," Curr. Opt. Photon. 1, 107-112 (2017). https://doi.org/10.3807/COPP.2017.1.2.107
  11. J. H. Lee, B. C. Bigelow, D. D. Walker, A. P. Doel, and R. G. Bingham, "Why adaptive secondaries?," Publ. Astron. Soc. Pacific 112, 97-107 (2000). https://doi.org/10.1086/316496
  12. E. Hecht, Optics (Addison Wesley, San Francisco, CA, USA 2002).
  13. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Opt. Soc. Am. 56, 1372-1379 (1966). https://doi.org/10.1364/JOSA.56.001372
  14. F. Roddier, "The effects of atmospheric turbulence in optical astronomy," Prog. Opt. 19, 281-376 (1981).
  15. F. Roddier, J. M. Gilli, and G. Lund, "On the origin of speckle boiling and its effects in stellar speckle interferometry," J. Opt. 13, 263-271 (1982). https://doi.org/10.1088/0150-536X/13/5/002
  16. D. P. Greenwood, "Bandwidth specification for adaptive optics system," J. Opt. Soc. Am. 67, 390-393 (1977). https://doi.org/10.1364/JOSA.67.000390
  17. G. Tyler, "Bandwidth considerations for tracking through turbulence," J. Opt. Soc. Am. 11, 358-367 (1994). https://doi.org/10.1364/JOSAA.11.000358
  18. R. R. Parenti, "Adaptive optics for astronomy," Lincoln Lab. J. 5, 93-114 (1992).
  19. J. H. Lee, S. J. Ro, K. Kim, T. Butterley, R. Wilson, Y. Choi, and S. Lee, "Robotic SLODAR development for seeing evaluations at the Bohyunsan Observatory," Advanced Maui Optical and Space Surveillance Technologies Conference (2015).
  20. R. W. Wilson, "SLODAR: measuring optical turbulence altitude with a Shack-Hartmann wavefront sensor," Mon. Not. R. Astron. Soc. 337, 103-108 (2002). https://doi.org/10.1046/j.1365-8711.2002.05847.x
  21. T. Butterley, R. W. Wilson, and M. Sarazin, "Determination of the profile of atmospheric optical turbulence strength from SLODAR data," Mon. Not. R. Astron. Soc. 369, 835-845 (2006). https://doi.org/10.1111/j.1365-2966.2006.10337.x
  22. J. Vernin and F. Roddier, "Experimental determination of two-dimensional spatiotemporal power spectra of stellar light scintillation Evidence for a multilayer structure of the air turbulence in the upper troposphere," J. Opt. Soc. Am. 63, 270-273 (1973). https://doi.org/10.1364/JOSA.63.000270
  23. B. Garcia-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-Almazan, "Estimation of adaptive optics parameters from wind speed: results for the Teide Observatory," Proc. SPIE 7476, 74760F (2009).
  24. B. Garcia-Lorenzo, A. Eff-Darwich, J. J. Fuensalida, and J. A. Castro-Almazan, "Adaptive optics parameters connection to wind speed at the Teide Observatory: corrigendum," Mon. Notices Royal Astron. 414, 801-809 (2011). https://doi.org/10.1111/j.1365-2966.2011.17787.x
  25. C. S. Gardner, B. M. Welsh, and L. A. Thopson, "Design and performance analysis of adaptive optical telescopes using laser guide stars," Proc. IEEE 78, 1721-1743 (1990). https://doi.org/10.1109/5.63300
  26. R. Flicker, "Efficient first-order performance estimation for high-order adaptive optics systems," Astron. Astrophys. 405, 1177-1189 (2003). https://doi.org/10.1051/0004-6361:20030653
  27. J. W. Hardy, Adaptive optics for astronomical telescopes (Oxford University Press, New York, USA 1998).
  28. https://www.alpao.com/adaptive-optics/deformable-mirrors.html (1 May. 2018).
  29. https://www.physikinstrumente.com/en/products/parallel-kinematic-hexapods/hexapods-with-motor-screw-drives/h-824-6-axis-hexapod-700815/ (1 May. 2018).
  30. http://www.axiomoptics.com/llc/ocam%C2%B2k/ (1 May. 2018).
  31. http://www.nuvucameras.com/products/ (1 May. 2018).
  32. M. S. Belen'kii, "Tilt angular correlation and tilt sensing techniques with a laser guide star," Proc. SPIE 2956, 206-217 (1997).
  33. C. M. Correia and J. Teixeira, "Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems," J. Opt. Soc. Am. A 31, 2763-2774 (2014). https://doi.org/10.1364/JOSAA.31.002763