• Title/Summary/Keyword: THICKNESS

Search Result 26,125, Processing Time 0.052 seconds

Real-Time Small Exposed Area $SiO_2$ Films Thickness Monitoring in Plasma Etching Using Plasma Impedance Monitoring with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Nam, Jae-Uk;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.320-320
    • /
    • 2013
  • Film thickness monitoring with plasma impedance monitoring (PIM) is demonstrated for small area $SiO_2$ RF plasma etching processes in this work. The chamber conditions were monitored by the impedance signal variation from the I-V monitoring system. Moreover, modified principal component analysis (mPCA) was applied to estimate the $SiO_2$ film thickness. For verification, the PIM was compared with optical emission spectroscopy (OES) signals which are widely used in the semiconductor industry. The results indicated that film thickness can be estimated by 1st principal component (PC) and 2nd PC. Film thickness monitoring of small area $SiO_2$ etching was successfully demonstrated with RF plasma harmonic impedance monitoring and mPCA. We believe that this technique can be potentially applied to plasma etching processes as a sensitive process monitoring tool.

  • PDF

Technology of Dimensional Control for Different Thickness Strip in Hot Strip Finishing Mills (열간 마무리압연에서 이종두께 강판의 치수제어기술)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.735-741
    • /
    • 2015
  • In this paper, we suggest a dimensional controller to produce a different thickness strip without adding production facilities at the same steel. We describe the model for the non-linear thickness and speed setup, and drive a variation of the speed and thickness with Talyor expansion. The control algorithm is composed of 8 steps and the transient condition is added in order to maintain a mass flow between stands. A simulator is developed in order to verify the algorithm, and includes a non-linear rolling model, the tension model, AGC model, the disturbance model, and so on. From the simulation results by disturbances, we show that the thickness, tension and looper angle are converged to the set condition when we change the rolling conditions.

A study of characteristics of X-band microstrip patch antenna affected b permittivity and electrical thickness of the substrate (기판의 유전율 및 전기적 두께가 X-벤드용 마이크로스트립 패치 안테나의 특성에 미치는 영향에 관한 연구)

  • 박성교;김준현;박종배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.65-81
    • /
    • 1996
  • In this study forty-five X-bnd rectangular microstrip patch antennas fed by microstrip line using ${\lambda}$/4 transformer were fabricated on teflon substrates with low high permittivities and varous thickness (substrate thickness : 0.6 ~ 2.4 mm, permittivities : 2.15 ~ 10.0), and effects of permittivity and electrical thickness on antenna characteristics were studied with measured return loss (1/S$_{11}$) and resonant frequencies. When substrate electrical thickness was greater than 0.060 ${\lambda}_{0}$return loss was very good and genrally more than 20 dB, but resonance characteristics was somewhat unstable. The more than 0.088 ${\lambda}_{0}$ the thickness was, the more unstable it was. As a result, in the rest range except 12, 13 GHz we had very good mesured return loss iwth greater than 20 dB, and in the range 7 to 9 GHz resonant frequencies were within $\pm$2 % error, on ${\epsilon}_{r}$=5.0, height = 2.4 mm substrate.

  • PDF

Effect of Nozzle Geometry on the Near Field Structure of Under Expanded, Dual, Coaxial Jet (노즐 형상이 부족팽창 동축제트 근접 유동장에 미치는 영향)

  • Lee, Kwon-Hee;Toshiake, Setoguchi;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1649-1654
    • /
    • 2004
  • The near field structures of an under-expanded, dual, coaxial, jets issuing from the coaxial nozzles with four different geometries are visualized by using a shadowgraph optical method. Experiments are conducted to investigate the effects of the nozzle-lip thickness, secondary stream thickness, the nozzle pressure ratio and the secondary swirl stream on the characteristics of under-expanded jets. The results show that the presence of secondary annular swirling stream causes the Mach disk to move further downstream and increases its diameter, which decreases with a decrease in the nozzle-lip thickness. The secondary stream thickness has an influence on the location of an annular shock wave.

  • PDF

Experimental Study on Non-contact Type Inspection System for Wing Rib Thickness Measurement (윙립 두께 측정용 비접촉식 검사 시스템에 관한 실험적 연구)

  • Lee, In-Su;Kim, Hae-Ji;Ahn, Myung-Sub
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.104-110
    • /
    • 2014
  • This paper presents a non-contact inspection system for automatically measuring the thickness of an aircraft wing rip product. In order to conduct the inspection of the wing rib thickness automatically, a non-contact laser displacement sensor, end-effector, and a robot were selected for use. The non-contact type inspection system was evaluated by measuring the measurement deviation of the rotation direction of a C-type yoke end-effector and the transfer direction of a V-slim end-effector. In addition, the non-contact inspection system for wing rib thickness measurements was validated through thickness measurements of a web, flange, and stiffener.

Optimum Thickness Distributions of Plate Structure with Different Essential Boundary Conditions in the Fundamental Frequency Maximization Problem (기본고유진동수 최대화 문제에 있어서 경계조건에 따른 판구조물의 최적두께 분포)

  • Lee, Sang-Jin;Kim, Ha-Ryong
    • Proceeding of KASS Symposium
    • /
    • 2006.05a
    • /
    • pp.227-232
    • /
    • 2006
  • This paper investigate the optimum thickness distribution of plate structure with different essential boundary conditions in the fundamental natural frequency maximization problem. In this study, the fundamental natural frequency is considered as the objective function to be maximized and the initial volume of structures is used as the constraint function. The computer-aided geometric design (CAGD) such as Coon's patch representation is used to represent the thickness distribution of plates. A reliable degenerated shell finite element is adopted calculate the accurate fundamental natural frequency of the plates. Robust optimization algorithms implemented in the optimizer DoT are adopted to search optimum thickness values during the optimization iteration. Finally, the optimum thickness distribution with respect to different boundary condition

  • PDF

A Probabilistic Study to the Effect of Specimen Thickness on Fatigue Crack Growth Resistance (피로균열전파저항에 미치는 시험편 두께의 영향에 관한 확률론적 연구)

  • 김선진;오세규
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.47-55
    • /
    • 1994
  • The purpose of the present study is to investigate the effect of specimen thickness on statistical properties of crack growth resistance. In this study, the resistance S$\delta$$_h$(x) to fatigue crack growth was treated as a spatial stochastic process. which varies randomly on the crack surface. The theoretical autocorrelation functions of the resistance to fatigue crack growth considering specimen thickness are discussed for several correlation lengths. The main results obtained are : (1) The theoretical autocorrelation functions of S$\delta$$_h$(x) are almost independent of specimen of specimen thickness except for the origin. (2) The variance increases with decreasing specimen thickness.

  • PDF

Stress Intensity Factors of a Combined Mode (I/III) Crack in a Variable Thickness Plate -CT Type- (두께가 변화하는 부재 내의 혼합모드 (I/III)균열의 응력확대계수 -CT형-)

  • 조명래
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.24-31
    • /
    • 1998
  • Variable thickness plates are commonly encountered in the majority of mechanical/structural components of industrial applications. And, as a result of the unsymmetry of the structure or the load and the anisoptropy of the materials, the cracks in engineering structures are generally subjected to combined stresses. In spite of considerable practical interest, however, a few fracture mechanics study on combined mode crack in a variable thickness plate have carried out. In this respect, combined mode I/III stress intensity factors $K_I$ and $K_III$ at the crack tip for a variable thickness plate were obtained by 3-dimensional finite element analysis. Variable thickness plates containing a central slant crack were chosen. The parameters used in this study were dimensionless crack length $\lamda$, crack slant angle $\alpha$, thickness ratio $\beta$ and width ratio $\omega$. Stress intensity factors were calculated by crack opening displacement(COD) and crack tearing displacement(CTD) method.

  • PDF

Correlation between the Thickness and Variation of Dielectric Conatant on SiOC thin film (SiOC 박막에서 박막의 두께와 유전율의 변화)

  • Oh, Teresa
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2505-2510
    • /
    • 2009
  • The SiOC films were deposited with the variation of flow rate ratios by chemical vapor deposition. It was researched the reason of decreasing the dielectric constant in SiOC film and the relationship between the dielectric constant and the thickness. The thickness of the deposited films tends to in proportion to the refractive index and the sample with the lowest dielectric constant decreased the thickness. The refractive index was decreased after annealing because of the decreasing of the film's thickness by annealing process.

Determination of Thin Film Thickness by EDS Analysis and its Modeling (EDS 분석과 모델링에 의한 박막두께 측정 방법에 관한 연구)

  • Yun, Jae-Jin;Lee, Won-Jong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.647-653
    • /
    • 2011
  • In this study, a method to measure the thickness of thin film by EDS (energy dispersive spectroscopy) is suggested. We have developed a model which calculates the thickness of thin film from the characteristic x-ray intensity ratio of the elements in thin film and substrate by considering incident electron beam energy, x-ray generation curve, backscattering and absorption of x-ray, take-off angle of x-ray and tilt angle of the sample. We obtained the relation curve between the film thickness measured experimentally and the x-ray intensity ratio of elements. The film thicknesses calculated from the model agrees quite well with those measured experimentally. Therefore, the thin film thickness can be measured rapidly and accurately by using the model developed in this study and the x-ray intensity ratio obtained in EDS analysis.